摘要:
In a process for removing etch residue, liquid including an acid and an oxidizer is applied to the back side and peripheral edge of a wafer. The front or device side of the wafer is left unprocessed, or may be exposed to an inert fluid such as a purge gas (e.g., nitrogen or helium), to a rinse such as deionized water, or to another processing fluid such as a more highly diluted etchant. The front side of the wafer is either left unprocessed, or is processed to a lesser degree without damage to the underlying devices, metal interconnects or semiconductor layers.
摘要:
A method for rinsing and drying a workpiece includes placing the workpiece into a chamber and spinning the workpiece. A rinsing fluid, such as water, is applied onto the workpiece through a first outlet in the chamber, with the rinsing fluid moving outwardly towards the edge of the workpiece via centrifugal force, to rinse the workpiece. A drying fluid, such as an alcohol vapor, is applied onto the workpiece through the first outlet, with the drying fluid moving outwardly towards the edge of the workpiece via centrifugal force, to dry the workpiece. The drying fluid advantageously follows a meniscus of the rinsing fluid across the workpiece surface. The rinsing fluid, or the drying fluid, or both fluids, may be applied near or at a central area of the workpiece.
摘要:
A processing fluid is selectively applied or excluded from an outer peripheral margin of the front side, back side, or both sides of a workpiece. Exclusion and/or application of the processing fluid occurs by applying one or more processing fluids to the workpiece as the workpiece is spinning. The flow rate of the one or more processing fluids, fluid pressure, and/or spin rate are used to control the extent to which the processing fluid is selectively applied or excluded from the outer peripheral margin.
摘要:
In a process for treating a workpiece such as a semiconductor wafer, a processing fluid is selectively applied or excluded from an outer peripheral-margin of at least one of the front or back sides of the workpiece. Exclusion and/or application of the processing fluid occurs by applying one or more processing fluids to the workpiece while the workpiece and a reactor holding the workpiece are spinning. The flow rate of the processing fluids, fluid pressure, and/or spin rate are used to control the extent to which the processing fluid is selectively applied or excluded from the outer peripheral margin.
摘要:
Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and an anion permeable barrier layer. The anion permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain anionic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit resistivity values within desired ranges.
摘要:
Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and an anion permeable barrier layer. The anion permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain anionic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit resistivity values within desired ranges.
摘要:
The methods described are directed to processes for producing structures containing metallized features for use in microelectronic workpieces. The processes treat a barrier layer to promote the adhesion between the barrier layer and the metallized feature. Suitable means for promoting adhesion between barrier layers and metallized features include an acid treatment of the barrier layer, an electrolytic treatment of the barrier layer, or deposition of a bonding layer between the barrier layer and metallized feature. The processes described modify an exterior surface of a barrier layer making it more suitable for electrodeposition of metal on a barrier, thus eliminating the need for a PVD or CVD seed layer deposition process. According to the processes described metallized features are formed on the treated barrier layers using processes that employ ion permeable barriers.
摘要:
Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and a cation permeable barrier layer. The cation permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain cationic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit deposit properties (e.g., resistivity) within desired ranges.
摘要:
Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and a cation permeable barrier layer. The cation permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain cationic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit deposit properties (e.g., resistivity) within desired ranges.
摘要:
Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and an anion permeable barrier layer. The anion permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain anionic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit resistivity values within desired ranges.