Abstract:
A programmable cell includes a split gate structure. The split gate structure includes a thin gate dielectric region and a thick gate dielectric region disposed below a gate conductor. A thickness of the thick oxide region is more than a thickness of the thin oxide region. The programmable cell can be fabricated using angle doping to dope an area associated with the thin dielectric region.
Abstract:
A lateral double-diffused MOS (LDMOS) bulk finFET device for high-voltage operation includes a first-well region and two or more second-well regions formed on a substrate material and one or more non-well regions including substrate material. The non-well regions are configured to separate well regions of the second-well regions. A source structure is disposed on a first fin that is partially formed on the first-well region. A drain structure is disposed on a second fin that is formed on a last one of the second-well regions. One or more dummy regions are formed on the one or more non-well regions. The dummy regions are configured to provide additional depletion region flow paths including vertical flow paths for charge carriers to enable the high-voltage operation.
Abstract:
A semiconductor device includes a first well and a second well implanted in a semiconductor substrate. The semiconductor device further includes a gate structure above the first and second wells between a raised source structure and a raised drain structure. The raised source structure above is in contact with the first well and connected with the gate structure through a first semiconductor fin structure. The raised drain structure above and in contact with the second well and connected with a second semiconductor fin structure. The second semiconductor fin structure includes at least a gap and a lightly doped portion.
Abstract:
An anti-fuse device for fin field-effect transistor (finFET) technology includes a dummy gate, an electrically conductive contact, and a diffusion contact. The dummy gate is formed over an end-corner of a fin. The electrically conductive contact is disposed on a portion of the dummy gate and can be used as a first electrode of the device. The diffusion contact is disposed over the fin and can be used as a second electrode of the device.
Abstract:
According to one embodiment, a one-time programmable (OTP) device having a lateral diffused metal-oxide-semiconductor (LDMOS) structure comprises a pass gate including a pass gate electrode and a pass gate dielectric, and a programming gate including a programming gate electrode and a programming gate dielectric. The programming gate is spaced from the pass gate by a drain extension region of the LDMOS structure. The LDMOS structure provides protection for the pass gate when a programming voltage for rupturing the programming gate dielectric is applied to the programming gate electrode. A method for producing such an OTP device comprises forming a drain extension region, fabricating a pass gate over a first portion of the drain extension region, and fabricating a programming gate over a second portion of the drain extension region.
Abstract:
A semiconductor device includes a substrate having a well region implanted with a first dopant by a first well implantation and a non-doped section blocked from the first well implantation. The semiconductor device includes a semiconductor fin formed on the substrate, in which the semiconductor fin has a channel stop region and a channel region above the channel stop region. The channel stop region has a portion of the non-doped section and a portion of the well region. The semiconductor fin has a planar channel formed at an interface between the non-doped section and the channel region for additional current flow between source and drain regions of the semiconductor fin. The semiconductor device includes an isolation layer disposed adjacent to and in contact with the well region and the channel stop region. The semiconductor device also includes a gate structure disposed on the isolation layer and around the channel region.
Abstract:
An MOS device with increased drain-source voltage (Vds) includes a source region and a drain region deposited on a substrate. A gate region includes an inner spacer that extends the drain region. The inner spacer is formed attached to an isolation spacer that isolates the drain region from the gate region. The inner spacer is configured to extend the drain region to modify an electric field in a portion of a conductive band of the MOS device.
Abstract:
A semiconductor device includes a first well and a second well implanted in a semiconductor substrate. The semiconductor device further includes a raised drain structure above and in contact with the second well and separate from the gate structure. The raised drain structure includes a drain connection point above the surface of the second well.
Abstract:
According to one embodiment, a one-time programmable (OTP) device having a lateral diffused metal-oxide-semiconductor (LDMOS) structure comprises a pass gate including a pass gate electrode and a pass gate dielectric, and a programming gate including a programming gate electrode and a programming gate dielectric. The programming gate is spaced from the pass gate by a drain extension region of the LDMOS structure. The LDMOS structure provides protection for the pass gate when a programming voltage for rupturing the programming gate dielectric is applied to the programming gate electrode. A method for producing such an OTP device comprises forming a drain extension region, fabricating a pass gate over a first portion of the drain extension region, and fabricating a programming gate over a second portion of the drain extension region.
Abstract:
Semiconductor devices are provided that use both silicon on insulator region and bulk region of a fully depleted silicon on insulator (FDSOI) device. For example, a semiconductor device includes a drain region that is disposed above a first type well and a first drain extension region that is disposed above the first type well and laterally spaced apart from the drain region. The semiconductor device further includes a second drain extension region that is disposed above the first type well and is laterally spaced apart from the drain region and the first drain extension region. The semiconductor device further includes a source region disposed above a second type well and laterally spaced apart from the second drain extension.