Abstract:
Methods, systems, and apparatuses for semiconductor devices are provided herein. A semiconductor device includes an array of conductive pads for signals. One or more non-linear compliant springs may be present to route signals from the conductive pads to interconnect pads formed on the semiconductor device to attach bump interconnects. Each non-linear compliant spring may include one or more routing segments. The semiconductor device may be mounted to a circuit board by the bump interconnects. When the semiconductor device operates, heat may be generated by the semiconductor device, causing thermal expansion by the semiconductor device and the circuit board. The semiconductor device and circuit board may expand by different amounts due to differences in their thermal coefficients of expansion. The non-linear compliant springs provide for compliance between the conductive pads and bump interconnects to allow for the different rates of expansion.
Abstract:
Methods and apparatuses are described for integration of integrated circuit die and silicon-based trench capacitors using silicon-level connections to reduce connection lengths, parasitics and necessary capacitance magnitudes and volumes. A trench capacitor can be fabricated on silicon and mounted on or embedded in a chip or one or more sides of a through silicon interposer (TSI) for silicon-level connections to chip circuitry. Aspect ratio dependent, as opposed to trench diameter or trench depth dependent, trench capacitors formed by a dense array of high aspect ratio trenches with thin, high permittivity dielectric increase capacitance per unit area and volume, resulting in thin, high capacitance trench capacitors having thickness equal to or less than chip thickness.
Abstract:
Methods, systems, and apparatuses for semiconductor devices are provided herein. A semiconductor device includes an array of conductive pads for signals. One or more non-linear compliant springs may be present to route signals from the conductive pads to interconnect pads formed on the semiconductor device to attach bump interconnects. Each non-linear compliant spring may include one or more routing segments. The semiconductor device may be mounted to a circuit board by the bump interconnects. When the semiconductor device operates, heat may be generated by the semiconductor device, causing thermal expansion by the semiconductor device and the circuit board. The semiconductor device and circuit board may expand by different amounts due to differences in their thermal coefficients of expansion. The non-linear compliant springs provide for compliance between the conductive pads and bump interconnects to allow for the different rates of expansion.
Abstract:
Methods and apparatuses are described for integration of integrated circuit die and silicon-based trench capacitors using silicon-level connections to reduce connection lengths, parasitics and necessary capacitance magnitudes and volumes. A trench capacitor can be fabricated on silicon and mounted on or embedded in a chip or one or more sides of a through silicon interposer (TSI) for silicon-level connections to chip circuitry. Aspect ratio dependent, as opposed to trench diameter or trench depth dependent, trench capacitors formed by a dense array of high aspect ratio trenches with thin, high permittivity dielectric increase capacitance per unit area and volume, resulting in thin, high capacitance trench capacitors having thickness equal to or less than chip thickness.
Abstract:
Methods, systems, and apparatuses are described for cooling electronic devices. The electrical device includes an integrated circuit die (IC) having opposing first and second surfaces, a plurality of interconnects on the second surface of the IC die that enable the IC die to be coupled to a substrate, and a flexural plate wave device. The flexural plate wave device is configured to generate a stream of air to flow across the electrical device to cool the IC die during operation of the IC die.