摘要:
The present invention provides a micromechanical or microoptomechanical structure produced by a process comprising defining the structure in a single-crystal silicon layer separated by an insulator layer from a substrate layer; selectively etching the single crystal silicon layer; depositing and etching a polysilicon layer on the insulator layer, with remaining polysilicon forming mechanical elements of the structure; metalizing a backside of the structure; and releasing the formed structure.
摘要:
The present invention provides a micromechanical or microoptomechanical structure. The structure is produced by a process comprising defining a pattern on a single crystal silicon layer separated by an insulator layer from a substrate layer; defining a structure in the single-crystal silicon layer; depositing and etching a polysilicon layer on the single crystal silicon layer, with remaining polysilcon forming mechanical or optical elements of the structure; and releasing the formed structure.
摘要:
The present invention provides a micromechanical or microoptomechanical structure. The structure is produced by a process comprising defining a structure on a single crystal silicon layer separated by an insulator layer from a substrate layer; depositing and etching a polysilicon layer on the single crystal silicon layer, with remaining polysilcon forming mechanical or optical elements of the structure; exposing a selected area of the single crystal silicon layer; and releasing the formed structure.
摘要:
The present invention provides a micromechanical or microoptomechanical structure. The structure is produced by a process comprising defining a structure on a single crystal silicon layer separated by an insulator layer from a substrate layer; depositing and etching a polysilicon layer on the single crystal silicon layer, with remaining polysilicon forming mechanical or optical elements of the structure; exposing a selected area of the single crystal silicon layer; and releasing the formed structure.
摘要:
A device structure is defined in a single-crystal silicon (SCS) layer separated by an insulator layer, such as an oxide layer, from a handle wafer. The SCS can be attached to the insulator by wafer bonding, and is selectively etched, as by photolithographic patterning and dry etching. A sacrificial oxide layer can be deposited on the etched SCS, on which polysilicon can be deposited. A protective oxide layer is deposited, and CMOS circuitry and sensors are integrated. Silicon microstructures with sensors connected to CMOS circuitry are released. In addition, holes can be etched through the sacrificial oxide layer, sacrificial oxide can be deposited on the etched SCS, polysilicon can be deposited on the sacrificial oxide, PSG can be deposited on the polysilicon layer, which both can then be patterned.
摘要:
A semiconductor structure includes a substrate, a sacrificial layer formed on or over the substrate, and a structural layer formed on or over the sacrificial layer. At least one opening is formed in the structural layer. At least one opening is formed in the sacrificial layer below the at least one opening in the structural layer. The at least one opening in the structural layer and the at least one opening in the sacrificial layer are at least partially filled with a filler material. At least one portion of the structural layer is removed to define at least one microstructure. The sacrificial layer is removed such that the at least one microstructure is released from the substrate and the filler material forms one or more protrusions on the at least one microstructure, and/or one or more anchors anchoring the at least one microstructure to the substrate.
摘要:
A microoptomechanical structure produced by defining a microoptical structure in a single-crystal silicon layer separated by an insulator layer from a handle wafer, such as a SOI wafer, selectively etching the single crystal silicon layer, depositing a sacrificial oxide layer on the etched single crystal silicon layer, depositing and etching a polysilicon layer on the sacrificial oxide layer, with remaining polysilcon forming hinge elements, and releasing formed microoptical structures. Embodiments use an oxide as an insulator, and other embodiments provide for wafer bonding of the silicon layer to the insulator layer.
摘要:
A tunable microelectromechanical (MEMS) spectrophotometer with a rotating cylindrical reflective diffraction grating is integrated with a photodetector and an optical fiber light source on a Rowland circle on a monolithic silicon substrate.
摘要:
A microelectromechanically tunable Fabry-Perot spectrophotometer is provided for color sensing. Optical fiber provides light input to a Fabry-Perot filter which is adjusted by a switched capacitor circuit. Spectral intensity is sensed by an integrated photodetector.
摘要:
A III-V compound light emitter is integrated with Si-based actuators. The Proposed devices take advantage of the superior optical properties of III-V compounds and the superior mechanical properties of Si, as well as mature fabrication technologies of Si-Micro-Electro-Mechanical Systems (MEMS). The emitter can be a light emitting diode (LED), a vertical cavity surface emitting laser (VCSEL) or an edge emitting laser. Electro or magnetic based actuation from Si-based actuators provides linear or angular movement of the light emitter.