Abstract:
An electronic module includes a first semiconductor device disposed on a first main surface of an insulating board of a printed wiring board, a first capacitor disposed on a second main surface of the insulating board at a position that overlaps with the first semiconductor device when viewed in a direction perpendicular to the first main surface, and a second capacitor disposed on the second main surface of the insulating board at a position that overlaps with the first semiconductor device when viewed in the direction perpendicular to the first main surface. A second electrode of the first capacitor is electrically connected to a ground pattern via a first ground via of the printed wiring board. A fourth electrode of the second capacitor is electrically connected to the ground pattern via a second ground via of the printed wiring board.
Abstract:
A printed circuit board has a printed wiring board and a semiconductor package mounted on the printed wiring board. The printed wiring board and the semiconductor package are connected with a plurality of solder balls. An underfill material covering the plurality of solder balls is filled between the printed wiring board and the semiconductor package. The underfill material has a relative dielectric constant of 8.6 or more and 54.4 or less. Thus, crosstalk noise generated in wiring in the out-of-plane direction is reduced without increasing the mounting area.
Abstract:
A printed wiring board includes a first conductive layer, a second conductive layer arranged at a gap with respective to the first conductive layer, a third conductive layer, a first via conductor and a second via conductor, and a third signal wiring pattern. A first signal wiring pattern is arranged on the first conductive layer, a second signal wiring pattern is arranged on the second conductive layer, and a third signal wiring pattern that is arranged on the third conductive layer. The third conductive layer is arranged between the first conductive layer and the second conductive layer via an insulating layer. The first via conductor and the second via conductor, which are arranged to be mutually adjacent, connect the first signal wiring pattern to the second signal wiring pattern. The third signal wiring pattern connects the first via conductor to the second via conductor.
Abstract:
An electric circuit includes a first power-supply line, a second power-supply line, a ground line, a first circuit, a second circuit, an RC series circuit, a capacitor, and a noise filter. The first circuit is configured to be electrically connected to the first power-supply line via a first power-supply terminal and electrically connected to the ground line via a first ground terminal. The second circuit is configured to be electrically connected to the second power-supply line via a second power-supply terminal and electrically connected to the ground line via a second ground terminal. The RC series circuit is disposed between the first power-supply terminal and the first ground terminal. The capacitor is disposed between the second power-supply terminal and the second ground terminal. The noise filter is disposed between the first power-supply line and the second power-supply line.
Abstract:
A printed circuit board has a printed wiring board and a semiconductor package mounted on the printed wiring board. The printed wiring board and the semiconductor package are connected with a plurality of solder balls. An underfill material covering the plurality of solder balls is filled between the printed wiring board and the semiconductor package. The underfill material has a relative dielectric constant of 8.6 or more and 54.4 or less. Thus, crosstalk noise generated in wiring in the out-of-plane direction is reduced without increasing the mounting area.
Abstract:
A printed wiring board includes a first conductive layer, a second conductive layer arranged at a gap with respective to the first conductive layer, a third conductive layer, a first via conductor and a second via conductor, and a third signal wiring pattern. A first signal wiring pattern is arranged on the first conductive layer, a second signal wiring pattern is arranged on the second conductive layer, and a third signal wiring pattern that is arranged on the third conductive layer. The third conductive layer is arranged between the first conductive layer and the second conductive layer via an insulating layer. The first via conductor and the second via conductor, which are arranged to be mutually adjacent, connect the first signal wiring pattern to the second signal wiring pattern. The third signal wiring pattern connects the first via conductor to the second via conductor.
Abstract:
First and second signal wiring patterns are formed in a first conductor layer. A first electrode pad electrically connected to the first signal wiring pattern through a first via and a second electrode pad electrically connected to the second signal wiring pattern through a second via are formed in a second conductor layer as a surface layer. A third conductor layer is disposed between the first conductor layer and the second conductor layer with an insulator interposed between those conductor layers. A first pad electrically connected to the first via is formed in the third conductor layer. The first pad includes an opposed portion which overlaps the second electrode pad as viewed in a direction perpendicular to the surface of a printed board and which is opposed to the second electrode pad through intermediation of the insulator. This enables reduction of crosstalk noise caused between the signal wirings.
Abstract:
An electric circuit includes a first power-supply line, a second power-supply line, a ground line, a first circuit, a second circuit, an RC series circuit, a capacitor, and a noise filter. The first circuit is configured to be electrically connected to the first power-supply line via a first power-supply terminal and electrically connected to the ground line via a first ground terminal. The second circuit is configured to be electrically connected to the second power-supply line via a second power-supply terminal and electrically connected to the ground line via a second ground terminal. The RC series circuit is disposed between the first power-supply terminal and the first ground terminal. The capacitor is disposed between the second power-supply terminal and the second ground terminal. The noise filter is disposed between the first power-supply line and the second power-supply line.
Abstract:
An electronic module includes a first semiconductor device disposed on a first main surface of an insulating board of a printed wiring board, a first capacitor disposed on a second main surface of the insulating board at a position that overlaps with the first semiconductor device when viewed in a direction perpendicular to the first main surface, and a second capacitor disposed on the second main surface of the insulating board at a position that overlaps with the first semiconductor device when viewed in the direction perpendicular to the first main surface. A second electrode of the first capacitor is electrically connected to a ground pattern via a first ground via of the printed wiring board. A fourth electrode of the second capacitor is electrically connected to the ground pattern via a second ground via of the printed wiring board.
Abstract:
An electric circuit includes a first power-supply line, a second power-supply line, a ground line, a first circuit, a second circuit, an RC series circuit, a capacitor, and a noise filter. The first circuit is configured to be electrically connected to the first power-supply line via a first power-supply terminal and electrically connected to the ground line via a first ground terminal. The second circuit is configured to be electrically connected to the second power-supply line via a second power-supply terminal and electrically connected to the ground line via a second ground terminal. The RC series circuit is disposed between the first power-supply terminal and the first ground terminal. The capacitor is disposed between the second power-supply terminal and the second ground terminal. The noise filter is disposed between the first power-supply line and the second power-supply line.