摘要:
An impedance matching circuit is disclosed. The impedance matching circuit includes two or more mutually coupled inductors. A total self inductance of the impedance matching circuit is less than a corresponding impedance matching circuit that includes inductors that are not mutually coupled. The two or more mutually coupled inductors may have known current ratios that match current ratios in the corresponding impedance matching circuit.
摘要:
Electromechanical systems dilation mode resonator (DMR) structures are disclosed. The DMR includes a first electrode layer, a second electrode layer, and a piezoelectric layer formed of a piezoelectric material. The piezoelectric layer has dimensions including a lateral distance (D), in a plane of an X axis and a Y axis perpendicular to the X axis, and a thickness (T), along a Z axis perpendicular to the X axis and the Y axis. A numerical ratio of the thickness and the lateral distance, T/D, is configured to provide a mode of vibration of the piezoelectric layer with displacement along the Z axis and along the plane of the X axis and the Y axis responsive to a signal provided to one or more of the electrodes. Ladder filter circuits can be constructed with DMRs as series and/or shunt elements, and the resonators can have spiral configurations.
摘要:
Electromechanical systems dilation mode resonator (DMR) structures are disclosed. The DMR includes a first electrode layer, a second electrode layer, and a piezoelectric layer formed of a piezoelectric material. The piezoelectric layer has dimensions including a lateral distance (D), in a plane of an X axis and a Y axis perpendicular to the X axis, and a thickness (T), along a Z axis perpendicular to the X axis and the Y axis. A numerical ratio of the thickness and the lateral distance, T/D, is configured to provide a mode of vibration of the piezoelectric layer with displacement along the Z axis and along the plane of the X axis and the Y axis responsive to a signal provided to one or more of the electrodes. Ladder filter circuits can be constructed with DMRs as series and/or shunt elements, and the resonators can have spiral configurations.
摘要:
Electromechanical systems dilation mode resonator (DMR) structures are disclosed. The DMR includes a first electrode layer, a second electrode layer, and a piezoelectric layer formed of a piezoelectric material. The piezoelectric layer has dimensions including a lateral distance (D), in a plane of an X axis and a Y axis perpendicular to the X axis, and a thickness (T), along a Z axis perpendicular to the X axis and the Y axis. A numerical ratio of the thickness and the lateral distance, T/D, is configured to provide a mode of vibration of the piezoelectric layer with displacement along the Z axis and along the plane of the X axis and the Y axis responsive to a signal provided to one or more of the electrodes. Ladder filter circuits can be constructed with DMRs as series and/or shunt elements, and the resonators can have spiral configurations.
摘要:
Electromechanical systems dilation mode resonator (DMR) structures are disclosed. The DMR includes a first electrode layer, a second electrode layer, and a piezoelectric layer formed of a piezoelectric material. The piezoelectric layer has dimensions including a lateral distance (D), in a plane of an X axis and a Y axis perpendicular to the X axis, and a thickness (T), along a Z axis perpendicular to the X axis and the Y axis. A numerical ratio of the thickness and the lateral distance, T/D, is configured to provide a mode of vibration of the piezoelectric layer with displacement along the Z axis and along the plane of the X axis and the Y axis responsive to a signal provided to one or more of the electrodes. Ladder filter circuits can be constructed with DMRs as series and/or shunt elements, and the resonators can have spiral configurations.
摘要:
A diversity receiver switch includes at least one second stage switch configured to communicate with a transceiver. The diversity receiver switch may also include at least one first stage switch coupled between a diversity receiver antenna and the second stage switch(es). The first stage switch(es) may be configured to handle a different amount of power than the second stage switch(es). The diversity receiver switch may include a bank of second stage switches configured to communicate with a transceiver. A first stage switch may be configured to handle more power than each switch in the bank of second stage switches. Alternatively, the diversity receiver switch include a bank of first stage switches coupled between the diversity receiver antenna and a second stage switch. The second stage switch may be configured to handle more power than each of the first stage switches.
摘要:
Methods and apparatus for metal semiconductor wafer bonding for high-Q devices are provided. An exemplary capacitor includes a first plate formed on a glass substrate, a second plate, and a dielectric layer. No organic bonding agent is used between the first plate and the glass substrate, and the dielectric layer can be an intrinsic semiconductor. A extrinsic semiconductor layer that is heavily doped contacts the dielectric layer. The dielectric and extrinsic semiconductor layers are sandwiched between the first and second plates. An intermetallic layer is formed between the first plate and the dielectric layer. The intermetallic layer is thermo compression bonded to the first plate and the dielectric layer. The capacitor can be coupled in a circuit as a high-Q capacitor and/or a varactor, and can be integrated with a mobile device.
摘要:
A diversity receiver switch includes at least one second stage switch configured to communicate with a transceiver. The diversity receiver switch may also include at least one first stage switch coupled between a diversity receiver antenna and the second stage switch(es). The first stage switch(es) may be configured to handle a different amount of power than the second stage switch(es). The diversity receiver switch may include a bank of second stage switches configured to communicate with a transceiver. A first stage switch may be configured to handle more power than each switch in the bank of second stage switches. Alternatively, the diversity receiver switch include a bank of first stage switches coupled between the diversity receiver antenna and a second stage switch. The second stage switch may be configured to handle more power than each of the first stage switches.
摘要:
This disclosure provides implementations of electromechanical systems resonator structures, devices, apparatus, systems, and related processes. In one aspect, a contour mode resonator device includes a first conductive layer with a plurality of first layer electrodes including a first electrode at which a first input signal can be provided and a second electrode at which a first output signal can be provided. A second conductive layer includes a plurality of second layer electrodes including a first electrode proximate the first electrode of the first conductive layer and a second electrode proximate the second electrode of the first conductive layer. A second signal can be provided at the first electrode or the second electrode of the second conductive layer to cooperate with the first input signal or the first output signal to define a differential signal. A piezoelectric layer is disposed between the first conductive layer and the second conductive layer. The piezoelectric layer includes a piezoelectric material. The piezoelectric layer is substantially oriented in a plane and capable of movement in the plane responsive to an electric field between the first electrodes or the second electrodes.
摘要:
A method and apparatus for a piezoelectric resonator having combined thickness and width vibrational modes are disclosed. A piezoelectric resonator may include a piezoelectric substrate and a first electrode coupled to a first surface of the piezoelectric substrate. The piezoelectric resonator may further include a second electrode coupled to a second surface of the piezoelectric substrate, where the first surface and the second surface are substantially parallel and define a thickness dimension of the piezoelectric substrate. Furthermore, the thickness dimension and the width dimension of the piezoelectric substrate are configured to produce a resonance from a coherent combination of a thickness vibrational mode and a width vibrational mode when an excitation signal is applied to the electrodes.