摘要:
An optical gate array includes a photodetector, an optical modulator, and a reflecting structure arranged therebetween. The photodetector, the optical modulator, and the reflecting structure are composed of semiconductor materials. The photodetector includes an MQW (Multi Quantum Well). The reflecting structure is constituted by a distributed Bragg reflector formed by alternately stacking semiconductor layers having different refractivities. The photodetector and the optical modulator are arranged to receive light from different directions. The modulation characteristics of the optical modulator are controlled by the intensity of light radiated on the photodetector. The reflecting structure connects the photodetector and the modulator electrically and isolates lights radiated on both parts. A plurality of optical gates, each constituted by the photodetector, the optical modulator, and the reflection structure, are two-dimensionally arranged.
摘要:
A vertical-cavity surface-emitting semiconductor laser has a substrate, a lower DBR structure portion having a plurality of layers provided on the substrate, a semiconductor buried structure portion provided over the lower DBR structure portion having at least one layer with buried therein an active layer, and an upper DBR structure portion having a plurality of layers provided over the semiconductor buried structure portion including the active layer. The active layer, at least one layer arranged over the active layer and at least one layer arranged beneath the active layer constitute an optical resonator region and each of the layers constituting the optical resonator region has an effective refractive index higher than respective effective refractive indices of other layers in the upper and lower DBR structure portions and a refractive index of the at least one layer constituting the semiconductor buried structure portion.
摘要:
A vertical-cavity surface-emitting semiconductor laser has a substrate, a lower DBR structure portion having a plurality of layers provided on the substrate, a semiconductor buried structure portion provided over the lower DBR structure portion having at least one layer with buried therein an active layer, and an upper DBR structure portion having a plurality of layers provided over the semiconductor buried structure portion comprising the active layer. The active layer, at least one layer arranged over the active layer and at least one layer arranged beneath the active layer constitute an optical resonator region and each of the layers constituting the optical resonator region has an effective refractive index higher than respective effective refractive indices of other layers in the upper and lower DBR structure portions and a refractive index of the at least one layer constituting the semiconductor buried structure portion.
摘要:
A vertical-cavity surface-emitting semiconductor laser has first and second semiconductor multi-layered films, an active layer, and third and fourth semiconductor multi-layered films which are piled up on a GaAs substrate in that order. Furthermore, the first film is formed by piling up Al.sub.x-1 Ga.sub.1-x1 As layers (0.ltoreq.x1.ltoreq.1) and Al.sub.x2 Ga.sub.1-x2 As layers (0.ltoreq.x2.ltoreq.1) one after the other by turns. The second film is formed by piling up In.sub.x3 Ga.sub.1-x3 As.sub.y3 P.sub.1-y3 layers (0.ltoreq.x3, y3.ltoreq.1) and In.sub.x4 Ga.sub.1-x4 As.sub.y4 P.sub.1-y4 layers (0.ltoreq.x4, y4.ltoreq.1) one after the other by turns. The active layer is provided as an In.sub.x5 Ga.sub.1-x5 As.sub.y5 P.sub.1-y5 layer (0.ltoreq.x5, y5.ltoreq.1). The third film is formed by piling up In.sub.x6 Ga.sub.1-x6 As.sub.y6 P.sub.1-y6 layers (0.ltoreq.x6, y6.ltoreq.1) and In.sub.x7 Ga.sub.1-x7 As.sub.y7 P.sub.1-y7 layers (0.ltoreq.x7, y7.ltoreq.1) one after the other by turns. The fourth film is formed by piling up Al.sub.x8 Ga.sub.1-x8 As layers (0.ltoreq.x8.ltoreq.1) and Al.sub.x9 Ga.sub.1-x9 As layers (0.ltoreq.x9.ltoreq.1) one after the other by turns. In each film, each layer has a thickness corresponding to a value obtained by dividing an emission wavelength by a refractive index and 4.
摘要:
A vertical-cavity surface-emitting semiconductor laser has first and second semiconductor multi-layered films, an active layer, and third and fourth semiconductor multi-layered films which are piled up on a GaAs substrate in that order. Furthermore, the first film is formed by piling up Al.sub.x1 Ga.sub.1-x1 As layers (0.ltoreq.x1.ltoreq.1) and Al.sub.x2 Ga.sub.1-x2 As layers (0.ltoreq.x2.ltoreq.1) one after the other by turns. The second film is formed by piling up In.sub.x3 Ga.sub.1-x3 As.sub.y3 P.sub.1-y3 layers (0.ltoreq.x3, y3.ltoreq.1) and In.sub.x4 Ga.sub.1-x4 As.sub.y4 P.sub.1-y4 layers (0.ltoreq.x4, y4.ltoreq.1) one after the other by turns. The active layer is provided as an In.sub.x5 Ga.sub.1-x5 As.sub.y5 P.sub.1-y5 layer (0.ltoreq.x5, y5.ltoreq.1). The third film is formed by piling up In.sub.x6 Ga.sub.1-x6 AS.sub.y6 P.sub.1-y6 layers (0.ltoreq.x6, y6.ltoreq.1) and In.sub.x7 Ga.sub.1-x7 As.sub.y7 P.sub.1-y7 layers (0.ltoreq.x7, y7.ltoreq.1) one after the other by turns. The fourth film is formed by piling up Al.sub.x8 Ga.sub.1-x8 As layers (0.ltoreq.x8.ltoreq.1) and Al.sub.x9 Ga.sub.1-x9 As layers (0.ltoreq.x9.ltoreq.1) one after the other by turns. In each film, each layer has a thickness corresponding to a value obtained by dividing an emission wavelength by a refractive index and 4.
摘要翻译:垂直腔表面发射半导体激光器具有依次堆积在GaAs衬底上的第一和第二半导体多层膜,有源层和第三和第四半导体多层膜。 此外,第一膜通过一个接一个地叠加Al x Ga 1-x As层(0≤x1)和Alx2Ga1-x2As层(0
摘要:
A spatial light modulator has a photoconductive layer deposited on one glass substrate having a transparent electrode. A first liquid crystal alignment film is formed on the photoconductive layer. A second liquid crystal alignment film is formed on another glass substrate having another transparent electrode. A ferroelectric liquid crystal is filled between the first and second liquid crystal alignment films.
摘要:
The distance detector 12b returns part of the light received from the distance detector 12a located at the starting point side by reflection, or reflection and refraction, sends the remaining part of the light to the distance detectors 12b, 12c, 12d and 12e located at the forefront end side by transmission, refraction, reflection or a combination thereof, and returns the returned light from the distance detectors 12b-12e to the distance detector 11a located at the starting point by transmission, refraction, reflection or a combination thereof. By using laser light sources, it is possible to measure the distance from the laser light sources to multiple points or the distance between two points with a high degree of accuracy.
摘要:
The distance detector 12b returns part of the light received from the distance detector 12a located at the starting point side by reflection, or reflection and refraction, sends the remaining part of the light to the distance detectors 12b, 12c, 12d and 12e located at the forefront end side by transmission, refraction, reflection or a combination thereof, and returns the returned light from the distance detectors 12b-12e to the distance detector 11a located at the starting point by transmission, refraction, reflection or a combination thereof. By using laser light sources, it is possible to measure the distance from the laser light sources to multiple points or the distance between two points with a high degree of accuracy.
摘要:
A method and an apparatus for shape measurement that is able to observe the deep portion under a skin with high spatial resolution by using a frequency COMB light generator is provided. A frequency COMB light generator for generating multiple frequency COMBs with variable frequency pitch at high operation stability is provided.This apparatus for shape measurement comprises a frequency COMB light generator and an optical interferometer for measuring the distance. The frequency COMB light generator includes a laser light source 11, an optical resonator 13, a COMB pitch regulator 14 and an output port OUT. The optical resonator 13 includes an optical modulator 131, a first mirror M11, an optical fiber F13 which is drawn out from alight waveguide of the optical modulator. The COMB pitch regulator 14 is a modulation signal generator for varying the modulation signal. The optical fiber F13 is equipped with an apparatus (Faraday rotation mirror) for compensating a change in the polarization condition.
摘要:
A voice transmission method and apparatus in a duplex radio system are disclosed in which a voice signal to be transmitted in a constant period of time is subjected to 1/N time compression, N being a numeral not smaller than 2.0. The time-compressed voice signal is supplied to a transmitter as a modulating signal and a transmitting operation is performed by the transmitter in synchronism with a period of time when the modulating signal is inputted to the transmitter. A receiving operation of receiving a time-compressed and modulated signal transmitted from the transmitter to demodulate it is performed by a receiver in a period of time other than the period of time when the transmitting operation is performed. A demodulated signal is subjected to N-ple time expansion to obtain a reproduced receive voice signal, and both the transmitting operation and the receiving operation are repeated at the constant period of time. In the voice transmission method and apparatus, a predetermined band of a signal corresponding to said signal to be transmitted, which is in a voice band, is extracted with a predetermined band width. The extracted signal is shifted to any band which is in the voice band and is other than the extracted band. A signal corresponding to the shifted signal is supplied to the transmitter as the modulating signal.