摘要:
A microfluidic element for analyzing a bodily fluid sample for an analyte contained therein is provided, the element having a substrate, a channel structure that is enclosed by the substrate, and a cover layer, and is rotatable around a rotational axis. The channel structure of the microfluidic element includes a feed channel having a feed opening, a ventilation channel having a ventilation opening, and at least two reagent chambers. The reagent chambers are connected to one another via two connection channels in such a manner that a fluid exchange is possible between the reagent chambers, one of the reagent chambers having an inlet opening, which has a fluid connection to the feed channel, so that a liquid sample can flow into the rotational-axis-distal reagent chamber. At least one of the reagent chambers contains a reagent, which reacts with the liquid sample.
摘要:
Method and system for carrying out heterogeneous chemical or biological reactions are disclosed. The method comprising providing an analytical device having at least one liquid processing unit having at least one reaction chamber and a first inlet channel in fluid communication with the reaction chamber. The method further comprises supplying to the reaction chamber via the first inlet channel or a second inlet channel analyte capturing particles, supplying to the reaction chamber via the first inlet channel or the second inlet channel a liquid sample containing an analyte of interest, and confining by an equilibrium of forces the analyte capturing particles in a particle rearrangement zone within the reaction chamber. The forces comprise a drag force Fd generated by flowing liquids and a counter-oriented force Fg. The method also comprises capturing analytes present in the liquid sample with the particles in the particle rearrangement zone.
摘要:
A microfluidic element for analysis of a fluid sample having a substrate and a microfluidic transport system having a channel structure enclosed by the substrate and a covering layer. The channel structure comprises a channel with two side walls as well as a chamber that is in fluid communication with the channel. The chamber has a chamber wall with an inlet orifice. The channel comprises a channel section and a valve section adjoining the channel section, wherein the valve section is in fluid communication with the inlet orifice in the chamber wall in such a way that a fluid can flow from the channel through the valve section and into the chamber. The valve section has a fluid transport cross-section, which enlarges in flow direction. The fluid transport cross-section in the valve section is greater than the fluid transport cross-section in the preceding channel section.
摘要:
Method and system for carrying out heterogeneous chemical or biological reactions are disclosed. The method comprising providing an analytical device having at least one liquid processing unit having at least one reaction chamber and a first inlet channel in fluid communication with the reaction chamber. The method further comprises supplying to the reaction chamber via the first inlet channel or a second inlet channel analyte capturing particles, supplying to the reaction chamber via the first inlet channel or the second inlet channel a liquid sample containing an analyte of interest, and confining by an equilibrium of forces the analyte capturing particles in a particle rearrangement zone within the reaction chamber. The forces comprise a drag force Fd generated by flowing liquids and a counter-oriented force Fg. The method also comprises capturing analytes present in the liquid sample with the particles in the particle rearrangement zone.
摘要:
A microfluidic test carrier having a substrate, covering layer, and capillary structure formed in the substrate is provided. The capillary structure is enclosed by the substrate and covering layer and comprises a receiving chamber, sample chamber and connection channel between the receiving and sample chambers. The receiving chamber has two boundary surfaces and a side wall, wherein one boundary surface forms the bottom and the other forms the cover. The receiving chamber has a surrounding venting channel and dam between the receiving chamber and venting channel. The dam and venting channel form a capillary stop configured as a geometric valve, through which air from the receiving chamber can escape into the venting channel. The connecting channel between the venting channel outflow and sample chamber inflow controls fluid transport from the receiving chamber into the sample chamber. The capillary stop is configured to prevent autonomous fluid transport from the receiving chamber.
摘要:
A microfluidic element for analyzing a bodily fluid sample for an analyte contained therein is provided, the element having a substrate, a channel structure that is enclosed by the substrate, and a cover layer, and is rotatable around a rotational axis. The channel structure of the microfluidic element includes a feed channel having a feed opening, a ventilation channel having a ventilation opening, and at least two reagent chambers. The reagent chambers are connected to one another via two connection channels in such a manner that a fluid exchange is possible between the reagent chambers, one of the reagent chambers having an inlet opening, which has a fluid connection to the feed channel, so that a liquid sample can flow into the rotational-axis-distal reagent chamber. At least one of the reagent chambers contains a reagent, which reacts with the liquid sample.
摘要:
A cartridge for an automatic analyzer, formed from a cover and carrier structure, is operable for rotation about an axis and has at least one container with at least one reservoir containing at least one fluid. Each container may rotate about the axis within a cavity and relative to the carrier structure. A piercing structure opens a seal of each reservoir when the container rotates relative to the carrier structure. Each container and each cavity has a frictional element that mate and cause friction. Each container has an engaging surface which mates with an engaging surface of a rotational actuator that applies torque to rotate and open the container via the piercing structure. A fluidic structure of the cartridge processes a biological sample into a processed biological sample and enables via a measurement structure measurement of the processed biological sample. A duct is between the cavity and the fluidic structure.
摘要:
A microfluidic element for thoroughly mixing a liquid with a reagent used for the analysis of the liquid for an analyte contained therein and a method thereof are disclosed. The microfluidic element has a substrate and a channel structure. The channel structure includes an elongate mixing channel and an output channel. The mixing channel has an inlet opening and an outlet opening, and is implemented to mix the reagent contained therein with the liquid flowing through the inlet opening into the mixing channel. The outlet opening of the mixing channel is in fluid communication to the output channel. The outlet opening is positioned closer to the middle of the length of the mixing channel than the inlet opening.
摘要:
A test element and method for detecting an analyte with the aid thereof is provided. The test element is essentially disk-shaped and flat, and can be rotated about a preferably central axis which is perpendicular to the plane of the disk-shaped test element. The test element has a sample application opening for applying a liquid sample, a capillary-active zone, in particular a porous, absorbent matrix, having a first end that is remote from the axis and a second end that is near to the axis, and a sample channel which extends from an area near to the axis to the first end of the capillary-active zone that is remote from the axis.
摘要:
An XPath generation system generates a default XPath expression (XPath) from a selected destination node. The system provides to a user the default XPath with modification options. The system modifies the default XPath according to selected modification options to generate a resulting XPath. If none of the modifications options are selected, the system selects the default XPath as the resulting XPath. The modification options comprise selecting a different node as a destination node of the XPath, selecting a context node as a starting node of the XPath, selecting an axis for specifying a path between the context node and the destination node, specifying selection of a node by name or by type, specifying selection of any node, and specifying return of only unique values of the resulting XPath.