摘要:
The invention provides compositions and methods for sequencing nucleic acids and other applications. In sequencing by synthesis, unlabeled reversible terminators are incorporated by a polymerase in each cycle, then labeled after incorporation by binding to the reversible terminator a directly or indirectly labeled antibody or other affinity reagent.
摘要:
Random arrays of single molecules are provided for carrying out large scale analyzes, particularly of biomolecules, such as genomic DNA, cDNAs, proteins, and the like. In one aspect, arrays of the invention comprise concatemers of DNA fragments that are randomly disposed on a regular array of discrete spaced apart regions, such that substantially all such regions contain no more than a single concatemer. Preferably, such regions have areas substantially less than 1 μm2 and have nearest neighbor distances that permit optical resolution of on the order of 109 single molecules per cm2. Many analytical chemistries can be applied to random arrays of the invention, including sequencing by hybridization chemistries, sequencing by synthesis chemistries, SNP detection chemistries, and the like, to greatly expand the scale and potential applications of such techniques.
摘要:
This application discloses methods of producing a DNA strand for sequencing, as well as genetic constructs, libraries, and arrays using DNA strands produced according to these methods. The application also discloses methods of sequencing using the DNA strands, genetic constructs, libraries, and arrays produced. In certain aspects, DNA being sequenced includes a target sequence and at least one adaptor sequence.
摘要:
Novel fluorescent nucleotide analogues are provided herein. Also provided herein are methods of using the nucleotide analogues in sequencing-by-synthesis and signal confinement methods.
摘要:
The invention relates to an automated method for high-throughput DNA sequencing from high density DNA arrays by (a) initiating a first sequencing reaction on a first high density DNA array; and imaging said first high density DNA array using a detector, and (b) initiating a first sequencing reaction on a second high density DNA array; and imaging said second high density DNA array using the detector, wherein the first sequencing reaction in (a) is initiated before the first sequencing reaction in (b) is initiated such that the sequencing reactions in (a) and (b) are staggered. By using asynchronous sequencing reactions and imaging two separate arrays using one detector, imaging can be carried out on one array while sequencing reactions are carried out on one the other, substrate, the other substrate is imaged, reducing the idle time of the imaging system.
摘要:
This application discloses methods of producing a DNA strand for sequencing, as well as genetic constructs, libraries, and arrays using DNA strands produced according to these methods. The application also discloses methods of sequencing using the DNA strands, genetic constructs, libraries, and arrays produced. In certain aspects, DNA being sequenced includes a target sequence and at least one adaptor sequence.
摘要:
A high density DNA array comprising a patterned surface, said surface comprising a pattern of small DNA binding regions separated by a non-DNA binding surface, wherein the DNA binding regions comprise DNA capture chemistry and the non-DNA binding surface does not have the DNA capture chemistry wherein more than 50% of the DNA binding regions in the array have single informative DNA species.
摘要:
Random arrays of single molecules are provided for carrying out large scale analyzes, particularly of biomolecules, such as genomic DNA, cDNAs, proteins, and the like. In one aspect, arrays of the invention comprise concatemers of DNA fragments that are randomly disposed on a regular array of discrete spaced apart regions, such that substantially all such regions contain no more than a single concatemer. Preferably, such regions have areas substantially less than 1 μm2 and have nearest neighbor distances that permit optical resolution of on the order of 109 single molecules per cm2. Many analytical chemistries can be applied to random arrays of the invention, including sequencing by hybridization chemistries, sequencing by synthesis chemistries, SNP detection chemistries, and the like, to greatly expand the scale and potential applications of such techniques.