Abstract:
A method and apparatus for delivering power to a hybrid vehicle is disclosed. The apparatus includes an apparatus for delivering power to a hybrid vehicle, the hybrid vehicle including a powertrain having a power take-off coupling, the powertrain including an engine and a transmission. The apparatus includes an electric motor operable to generate a torque, the motor being coupled to transmit a starting torque through the power take-off of the powertrain for starting the engine.
Abstract:
A method and apparatus for managing power in a hybrid vehicle is disclosed. The vehicle includes an engine, an electric motor, and an energy storage element coupled to the motor. The method involves receiving a request to supply operating power to drive the vehicle and responding to the request by selecting an apportionment of operating power between the engine and the motor from among a plurality of apportionments having respective operating costs such that the selected apportionment is associated with a minimum operating cost, the operating cost including at least an engine fuel consumption cost and a storage element lifetime cost. The method further involves causing power to be supplied by at least one of the engine and the motor in accordance with the selected apportionment.
Abstract:
A method and apparatus for starting an engine in a hybrid vehicle being driven by an electric motor is disclosed. The motor is operably configured to deliver mechanical power through an automatic transmission to at least one vehicle drive wheel to cause an acceleration of the vehicle. The method involves coupling the engine to the motor to cause an inertial load on the motor thus causing the motor to decelerate to a reduced rotational speed to provide a starting torque to the engine for starting the engine, and causing the automatic transmission to change gear ratio to a target gear ratio associated with the reduced rotational speed while causing the motor to decelerate, the motor being operable to deliver increased torque at the reduced rotational speed, thereby generally maintaining the acceleration of the vehicle.
Abstract:
A method and apparatus for starting an engine in a hybrid vehicle being driven by an electric motor is disclosed. The motor is operably configured to deliver mechanical power through an automatic transmission to at least one vehicle drive wheel to cause an acceleration of the vehicle. The method involves coupling the engine to the motor to cause an inertial load on the motor thus causing the motor to decelerate to a reduced rotational speed to provide a starting torque to the engine for starting the engine, and causing the automatic transmission to change gear ratio to a target gear ratio associated with the reduced rotational speed while causing the motor to decelerate, the motor being operable to deliver increased torque at the reduced rotational speed, thereby generally maintaining the acceleration of the vehicle.
Abstract:
A method and apparatus for starting an internal combustion engine is disclosed. A motor is mechanically coupled to the engine, the engine having at least one moveable element mounted in a chamber, the moveable element being operable to cause a changing compression condition within the chamber and being mechanically coupled to a shaft for generating mechanical power. The method involves causing the motor to supply a positioning torque to the engine to move the at least one moveable element into a starting position. The method also involves causing the motor to supply a starting torque to the engine when the at least one moveable element is in the starting position to cause the moveable element to accelerate from the starting position under low compression conditions to generate sufficient momentum to overcome a peak compression condition in the chamber, thereby reducing the starting torque required to start the engine.
Abstract:
An apparatus for selecting operating conditions of a genset, the apparatus including a processor circuit configured to select a set of operating points from a plurality of operating points of the genset each comprising an engine speed in a generator electrical output value and a plurality of cost values associated with operating the genset at respective operating points such that the sum of the cost values associated with the operating points in said set is minimized and such that the engine speed increases or decreases monotonically with monotonically increasing or decreasing electrical power output values.