Abstract:
A heat dissipation component for a semiconductor element includes: a composite part containing 50-80 vol % diamond powder with the remainder having metal including aluminum, the diamond powder having a particle diameter volume distribution first peak at 5-25 μm and a second peak at 55-195 μm. A ratio between a volume distribution area at particle diameters of 1-35 μm and a volume distribution area at particle diameters of 45-205 μm is 1:9 to 4:6; surface layers on both composite part principal surfaces, each of the surface layers containing 80 vol % or more metal including aluminum and having a film thickness of 0.03-0.2 mm; and a crystalline Ni layer and an Au layer on at least one of the surface layers, the crystalline Ni layer having a film thickness of 0.5-6.5 μm, and the Au layer having a film thickness of 0.05 μm or larger.
Abstract:
A sheet-shaped aluminum-diamond composite containing a prescribed amount of a diamond powder wherein a first and second peak in a volumetric distribution of particle sizes occurs at 5-25 μm and 55-195 μm, and a ratio between an area of a volumetric distribution of particle sizes of 1-35 μm and 45-205 μm is from 1:9 to 4:6, the composite including an aluminum-containing metal as the balance, wherein the composite is covered, on both main surfaces, with a surface layer having prescribed film thicknesses and containing 80 vol % or more of an aluminum-containing metal, two or more Ni-containing layers are formed on at least the surface layer, the Ni-containing layers being such that a first and second layer from the surface layer side are amorphous Ni alloy layers having prescribed thicknesses, and an Au layer having a prescribed thickness is formed as an outermost layer.
Abstract:
The present invention provides an aluminum-diamond composite which combines high thermal conductivity and a coefficient of thermal expansion close to a semiconductor clement, and in which the difference between the thicknesses of both surfaces is reduced so as to be suitable for use as a heat sink etc. for a semiconductor element. Provided is a flat plate-shaped aluminum-diamond composite that has an aluminum-diamond composite part and a surface layer that coats both surfaces of the composite part and includes a metal that has aluminum as a principal component, Wherein: the composite part is composed of a composite material that is composed of an aluminum or aluminum alloy matrix and diamond particles dispersed in said matrix; the composite material is composed of a diamond powder in which diamond particles having a particle size of 1-20 μm, inclusive, make up 10-40 vol of the diamond particles and diamond particles having a particle size of 100-250 μm, inclusive, make up 50-80 vol %, said powder not containing diamond particles having a particle size of less than 1 μm or diamond particles having a particle size of more than 250 μm; and the average value for the differences in in-plane thickness per 50 mm×50 mm is 100 μm or less.
Abstract:
A production method for an aluminum-diamond composite having a step of providing a laminate structure including a composition layer containing a diamond powder in an opening of a flat plate-like porous material having the opening so as to be separated from an inner circumferential surface of the opening and a step of press-fitting a melt of a metal containing aluminum into a space between the porous material and the laminate structure and impregnating the composition layer with the melt to form a composited part containing aluminum and diamond and forming metal layers on at least side surfaces of the laminate structure, in which the laminate structure includes a first mold release plate, a first inorganic layer, the composition layer, a second inorganic layer and a second mold release plate in this order.
Abstract:
A substantially rectangular flat heat dissipation member includes: a composite portion where silicon carbide having voids is impregnated with metal; and a metal portion that is different from the composite portion. Here, a proportion of a volume of the metal portion to a total volume of the heat dissipation member is 2.9% or higher and 12% or lower. In addition, when a length of a diagonal line of the rectangular flat heat dissipation member is represented by L, in a top view where one main surface of the heat dissipation member is a top surface, 40% or higher of a total volume of the metal portion is present in a region D within a distance of L/6 from an apex of any one of four corners of the heat dissipation member. Further, a hole penetrates the metal portion in the region D.
Abstract:
A composite is obtained by press-molding a mixed powder comprising 20-50 vol % of a metal powder and 50-80 vol % of a diamond powder for which a first peak in a volumetric distribution of particle size lies at 5-25 μm, and a second peak lies at 55-195 μm, and a ratio between the area of a volumetric distribution of particle sizes of 1-35 μm and the area of a volumetric distribution of particle sizes of 45-205 μm is from 1:9 to 4:6, thereby obtaining a composite having a high thermal conductivity and a coefficient of thermal expansion close to that of semiconductor devices, which is easy to mold into a prescribed shape.
Abstract:
A semiconductor package having, stacked in the following order, a heat dissipating member, a joining layer and an insulation member, wherein the heat dissipating member has an aluminum-diamond composite containing diamond grains and a metal containing aluminum; and the joining layer that joins the heat dissipating member and the insulation member is formed using a composite material having silver oxide fine particles or organic-coated silver fine particles having an average particle size of at least 1 nm and at most 100 μm.
Abstract:
An aluminum-diamond composite that exhibits both high thermal conductivity and a coefficient of thermal expansion close to that of semiconductor devices, and that can suppress the occurrence of swelling, etc., of a surface metal layer portion even in actual use under a high load. An aluminum-diamond composite includes 65-80 vol % of a diamond powder having a roundness of at least 0.94, for which a first peak in a volumetric distribution of grain size lies at 5-25 μm, and a second peak lies at 55-195 μm, and a ratio between the area of the volumetric distribution of grain sizes of 1-35 μm and the area of the volumetric distribution of grain sizes of 45-205 μm is from 1:9 to 4:6; the balance being composed of a metal containing aluminum.
Abstract:
A plurality of heat dissipation substrates stacked on each other, intermediate sheets disposed under a lowermost heat dissipation substrate, on an uppermost heat dissipation substrate, and between heat dissipation substrates adjacent to each other, a drying agent disposed over or under the plurality of heat dissipation substrates, and a bag that seals the plurality of heat dissipation substrates, the plurality of intermediate sheets, and the drying agent.
Abstract:
To provide a method for manufacturing a heat dissipation component having excellent heat dissipation properties, in which there is minimal return of warping after the bonding of a circuit board, and to provide a heat dissipation component manufactured using the method. Provided is a method for manufacturing a warped flat-plate-shaped heat dissipation component containing a composite part that comprises silicon carbide and an aluminum alloy, wherein the method for manufacturing the heat dissipation component is characterized in that the heat dissipation component is sandwiched in a concave-convex mold having a surface temperature of at least 450° C. and having a pair of opposing spherical surfaces measuring 7000-30,000 mm in curvature radius, and pressure is applied for 30 seconds or more at a stress of 10 kPa or more such that the temperature of the heat dissipation component reaches at least 450° C.