HEAT DISSIPATION COMPONENT FOR SEMICONDUCTOR ELEMENT

    公开(公告)号:US20170268834A1

    公开(公告)日:2017-09-21

    申请号:US15508187

    申请日:2015-09-01

    Abstract: A heat dissipation component for a semiconductor element includes: a composite part containing 50-80 vol % diamond powder with the remainder having metal including aluminum, the diamond powder having a particle diameter volume distribution first peak at 5-25 μm and a second peak at 55-195 μm. A ratio between a volume distribution area at particle diameters of 1-35 μm and a volume distribution area at particle diameters of 45-205 μm is 1:9 to 4:6; surface layers on both composite part principal surfaces, each of the surface layers containing 80 vol % or more metal including aluminum and having a film thickness of 0.03-0.2 mm; and a crystalline Ni layer and an Au layer on at least one of the surface layers, the crystalline Ni layer having a film thickness of 0.5-6.5 μm, and the Au layer having a film thickness of 0.05 μm or larger.

    ALUMINUM-SILICON CARBIDE COMPOSITE AND PRODUCTION METHOD THEREFOR

    公开(公告)号:US20170236767A1

    公开(公告)日:2017-08-17

    申请号:US15500210

    申请日:2015-07-29

    Abstract: An aluminum-silicon carbide composite including flat-plate-shaped composited portion containing silicon carbide and an aluminum alloy, and aluminum layers containing an aluminum alloy provided on both plate surfaces of composited portion, wherein circuit board is mounted on one plate surface and the other plate surface is used as heat-dissipating surface, wherein: the heat-dissipating-surface-side plate surface of the composited portion has a convex curved shape; the heat-dissipating-surface-side aluminum layer has a convex curved shape; ratio (Ax/B) between the average (Ax) of the thicknesses at the centers on opposing short sides of outer peripheral surfaces and thickness (B) at central portions of the plate surfaces satisfies the relationship: 0.91≦Ax/B≦1.00; and a ratio (Ay/B) between the average (Ay) of the thicknesses at the centers on opposing long sides of outer peripheral surfaces and thickness (B) at central portions of the plate surfaces satisfies the relationship: 0.94≦Ay/B≦1.00 and production method therefor.

    HEAT DISSIPATION COMPONENT FOR SEMICONDUCTOR ELEMENT

    公开(公告)号:US20190341330A1

    公开(公告)日:2019-11-07

    申请号:US16474690

    申请日:2017-11-24

    Abstract: A sheet-shaped aluminum-diamond composite containing a prescribed amount of a diamond powder wherein a first and second peak in a volumetric distribution of particle sizes occurs at 5-25 μm and 55-195 μm, and a ratio between an area of a volumetric distribution of particle sizes of 1-35 μm and 45-205 μm is from 1:9 to 4:6, the composite including an aluminum-containing metal as the balance, wherein the composite is covered, on both main surfaces, with a surface layer having prescribed film thicknesses and containing 80 vol % or more of an aluminum-containing metal, two or more Ni-containing layers are formed on at least the surface layer, the Ni-containing layers being such that a first and second layer from the surface layer side are amorphous Ni alloy layers having prescribed thicknesses, and an Au layer having a prescribed thickness is formed as an outermost layer.

    ALUMINUM-DIAMOND-BASED COMPOSITE AND METHOD FOR PRODUCING SAME

    公开(公告)号:US20180281230A1

    公开(公告)日:2018-10-04

    申请号:US15765931

    申请日:2016-10-11

    Abstract: The present invention provides an aluminum-diamond composite which combines high thermal conductivity and a coefficient of thermal expansion close to a semiconductor clement, and in which the difference between the thicknesses of both surfaces is reduced so as to be suitable for use as a heat sink etc. for a semiconductor element. Provided is a flat plate-shaped aluminum-diamond composite that has an aluminum-diamond composite part and a surface layer that coats both surfaces of the composite part and includes a metal that has aluminum as a principal component, Wherein: the composite part is composed of a composite material that is composed of an aluminum or aluminum alloy matrix and diamond particles dispersed in said matrix; the composite material is composed of a diamond powder in which diamond particles having a particle size of 1-20 μm, inclusive, make up 10-40 vol of the diamond particles and diamond particles having a particle size of 100-250 μm, inclusive, make up 50-80 vol %, said powder not containing diamond particles having a particle size of less than 1 μm or diamond particles having a particle size of more than 250 μm; and the average value for the differences in in-plane thickness per 50 mm×50 mm is 100 μm or less.

Patent Agency Ranking