Abstract:
A method for supplying a sliding process material to or removing it from a surface of an object to be slid using a sliding part including a plurality of sliding bodies each having a flat working surface, the sliding part is regularly moved, preferably by a second driving mechanism, in parallel with the working surfaces of the sliding bodies and in a direction different from a moving direction of the sliding bodies while the sliding bodies are regularly moved, preferably by a first driving mechanism, in parallel with the working surfaces. This configuration uniformly supplies the sliding process material to the surface of the object to be slid.
Abstract:
A method for manufacturing a semiconductor device and an underfill film which can achieve voidless mounting and excellent solder bonding properties even in the case of collectively bonding a plurality of semiconductor chips are provided. The method includes a mounting step of mounting a plurality of semiconductor chips having a solder-tipped electrode onto an electronic component having a counter electrode opposing the solder-tipped electrode via an underfill film; and a compression bonding step of collectively bonding the plurality of semiconductor chips to the electronic component via the underfill film. The underfill film contains an epoxy resin, an acid anhydride, an acrylic resin, and an organic peroxide and has a minimum melt viscosity of 1,000 to 2,000 Pa*s and a melt viscosity gradient of 900 to 3,100 Pa*s/° C. from a temperature 10° C. higher than a minimum melt viscosity attainment temperature to a temperature 10° C. higher than the temperature.
Abstract:
A sliding device configured to perform a sliding process on a surface of an object to be slid includes a sliding part including sliding bodies each having a flat working surface; a first driving mechanism configured to regularly move the sliding bodies in parallel with the working surfaces of the sliding bodies; and a second driving mechanism configured to regularly move the sliding part in parallel with the working surfaces in a direction different from a moving direction by the first driving mechanism while the first driving mechanism moves the sliding bodies. This enables uniform supply of the sliding process material onto the surface of the object to be slid or clean the surface of the object to be slid.
Abstract:
An underfill material achieving a wide margin for mounting and a method for manufacturing a semiconductor device using the same are provided. The underfill material contains an epoxy resin, an acid anhydride, an acrylic resin, and an organic peroxide, wherein a minimum melt viscosity attainment temperature and a minimum melt viscosity obtained when melt viscosity of the underfill material is measured under a temperature increase rate condition in a range of 5 to 50° C./min are in a range of 100° C. to 150° C. and in a range of 100 to 5000 Pa·s, respectively. Since variation in the minimum melt viscosity attainment temperature measured under different temperature increase conditions is small, voidless mounting and good solder bonding properties can be achieved without strict control on the temperature profile during thermocompression bonding, and a wide margin for mounting can be achieved.