摘要:
A base insulating layer is formed on a suspension body. A lead wire for plating and a wiring trace are integrally formed on the base insulating layer. A cover insulating layer is formed on the base insulating layer to cover the lead wire for plating and the wiring trace. A thickness of a portion of the cover insulating layer above a region of the base insulating layer in which the lead wire for plating is formed is set smaller than the thickness of a portion of the cover insulating layer above other regions of the base insulating layer.
摘要:
A base insulating layer is formed on a suspension body. Read wiring patterns, write wiring patterns and a ground pattern are formed in parallel on the base insulating layer. A first cover insulating layer is formed on the base insulating layer to cover the read wiring patterns, the write wiring patterns and the ground pattern. A ground layer is formed in a region on the first cover insulating layer above the write wiring patterns. A second cover insulating layer is formed on the first cover insulating layer to cover the ground layer.
摘要:
A base insulating layer is formed on a suspension body, and write wiring traces and read wiring traces are formed on the base insulating layer. The write wiring trace and the read wiring traces are formed on a body region of the base insulating layer, and the write wiring trace is formed on an auxiliary region of the base insulating layer. The base insulating layer is bent along a bend portion. This causes the write wiring trace to be positioned above the write wiring trace.
摘要:
A base insulating layer is formed on a suspension body, and write wiring traces and read wiring traces are formed on the base insulating layer. The write wiring trace and the read wiring traces are formed on a body region of the base insulating layer, and the write wiring trace is formed on an auxiliary region of the base insulating layer. The base insulating layer is bent along a bend portion. This causes the write wiring trace to be positioned above the write wiring trace.
摘要:
An FPC board includes a base insulating layer. A plurality of wiring traces are formed on the base insulating layer. The adjacent wiring traces are arranged at a distance d from each other, and each wiring trace has a predetermined width and a thickness t1. Each transmission line pair is constituted by the two adjacent wiring traces of the plurality of wring traces. A ratio of the thickness t1 of the wiring trace to the distance d between the adjacent wiring traces is set to 0.8 or more. A cover insulating layer may be formed on the base insulating layer to cover the wiring traces. A metal layer having a predetermined thickness may be provided on a back surface of the base insulating layer. Furthermore, a differential impedance of each transmission line pair may be set to 100 Ω.
摘要:
A plurality of wiring traces are formed on a base insulating layer, and a metal layer is formed on the opposite surface of the base insulating layer. Two adjacent wiring traces constitute a transmission line pair. The width of the wiring trace is set to not more than 250 μm, and the distance between the adjacent wiring traces is set to not less than 8 μm. The thickness of the base insulating layer is selected to cause differential impedance of the transmission line pair to be not less than 10 Ω and not more than 50 Ω.
摘要:
A plurality of wiring traces are formed on a base insulating layer, and a metal layer is formed on the opposite surface of the base insulating layer. Two adjacent wiring traces constitute a transmission line pair. The width of the wiring trace is set to not more than 250 μm, and the distance between the adjacent wiring traces is set to not less than 8 μm. The thickness of the base insulating layer is selected to cause differential impedance of the transmission line pair to be not less than 10Ω and not more than 50Ω.
摘要:
Provided are an opto-electric hybrid board and a manufacturing method therefor. An optical waveguide unit includes protruding portions which are extendingly provided at portions of at least one of an undercladding layer and an overcladding layer, and the protruding portions are located and formed at predetermined locations with respect to a light transmitting surface of a core. An electric circuit unit includes a bent portion having fitting holes into which the protruding portions fit and having an optical element. The fitting holes are located and formed at predetermined locations with respect to the optical element. The optical waveguide unit and the electric circuit unit are coupled to each other in a state in which the protruding portions fit into the fitting holes to form an opto-electric hybrid board.
摘要:
Provided are an opto-electric hybrid board which eliminates the necessity of an aligning operation of a core of an optical waveguide unit and an optical element of an electric circuit unit and which is excellent in mass-productivity, and a manufacturing method therefor. The opto-electric hybrid board includes an optical waveguide unit and an electric circuit unit having an optical element mounted thereon, the electric circuit unit being coupled to the optical waveguide unit. The optical waveguide unit includes protruding portions which are extendingly provided at portions of at least one of the undercladding layer and the overcladding layer, and are located and formed at predetermined locations with respect to a light transmitting surface of a core. The electric circuit unit includes fitting holes into which the protruding portions fit, and are located and formed at predetermined locations with respect to the optical element.
摘要:
Provided are an opto-electric hybrid board which eliminates the necessity of an aligning operation of a core of an optical waveguide unit and an optical element of an electric circuit unit and which is excellent in mass-productivity, and a manufacturing method therefor. The opto-electric hybrid board includes an optical waveguide unit and an electric circuit unit having an optical element mounted thereon, the electric circuit unit being coupled to the optical waveguide unit. The optical waveguide unit includes fitting holes which are formed in a surface of an overcladding layer and are located and formed at predetermined locations with respect to one end surface of a core. The electric circuit unit includes protruding portions which fit into the fitting holes and are located and formed at predetermined locations with respect to the optical element.