摘要:
A DC--DC converter having an input node receiving an input voltage V.sub.IN and generating an output voltage V.sub.OUT. A reference voltage generator provides a voltage V.sub.REF and a hysteresis voltage generator provides a voltage V.sub.HYST. A first comparator generates a signal determined from a difference between V.sub.REF and V.sub.OUT. A second comparator generates a signal determined from a difference between V.sub.OUT and V.sub.HYST. A latch is coupled to receive the outputs of the first and second comparators, and to generate an output. A driver circuit receives the latch output and generates a PWM signal used to switch the output stage. A double pulse suppression circuit masks off the latch inputs for a preselected time during the switching intervals fo the main power transistors to eliminate noise jitter.
摘要:
A thick copper interconnection structure and method for an LDMOS transistor for power semiconductor devices. A large LDMOS transistor is formed of a plurality of source and drain diffusion regions to be coupled together to form the source and drain. Gate regions are formed between the alternating source and drain diffusions. Each diffusion region has a first metal layer stripe formed over it and in electrical contact with it. A second metal layer conductor is formed over a plurality of the first metal layer stripes, and selectively contacts the first metal layer stripes to form a source and a drain bus. A thick third metal layer is then formed over each second metal layer bus, either physically contacting it or selectively electrically contacting it. The thick third level metal is fabricated of a highly conductive copper layer. The thick third level metal bus substantially lowers the resistance of the LDMOS transistor and further eliminates current debiasing and early failure location problems experienced with LDMOS transistors of the prior art. Other devices and methods are described.
摘要:
A plastic packaged integrated circuit (20) having a thick copper plated top surface level interconnection structure. A semiconductor integrated circuit (20) is formed having devices at the surface of a semiconductor substrate (23). First and second metallization layers (27, 31) are formed over the substrate and contacting selected ones of said devices. The first and second levels of metallization may be in contact with one another through vias. A thick top surface level metal interconnect layer (35) is then formed over the second metal layer (31), either physically contacting it or selectively electrically contacting it. The surface level metal (35) is fabricated of a highly conductive copper layer. The thick surface level metal layer (35) substantially lowers the resistance of the interconnect metallization of the device (20) and further eliminates current debiasing and early failure location problems experienced with integrated circuits of the prior art. In one embodiment, the copper surface level interconnect layer (35) is coated with a thin barrier layer of material (37) which may receive a bond wire. The entire structure is then encapsulated in a plastic package (22) such that the plastic is in physical contact with the copper interconnect metal (35). The use of the plastic packaging (22) in physical contact with the copper interconnect metal (35) eliminates the need for the passivation layers of the prior art. Other devices and methods are described.
摘要:
An interconnection structure and method for a multiple zener diode ESD protectoin circuit for power semiconductor devices. A plurality of lateral Zener diodes is formed. Each device is formed of a plurality of cathode and anode diffusion regions to be coupled together to form the cathode and anode of one or more Zener diodes. Each diffusion region has a first metal layer stripe formed over it and in electrical contact with it. A second metal layer conductor is formed over a plurality of the first metal layer stripes, and selectively contacts the first metal layer stripes to form a bus. A thick third metal layer is then formed over each second metal layer bus, either physically contacting it or selectively electrically contacting it. The thick third level metal is fabricated of a highly conductive material, such as copper. The resulting Zener diodes are coupled together in an ESD structure using the second level busses and the thick copper third level busses. The ESD structure of the preferred embodiment has low overall resistance and fast time to breakdown and provides excellent protection for the circuits to be protected. Other devices, systems and methods are also disclosed.
摘要:
A DC-DC converter that generates a sense signal representing a voltage drop across a low-side switch when the low-side switch is on. The sense signal is inverted and stored in a "hold" capacitor until the beginning of the next switching cycle. More specifically, an input node receives an input voltage V.sub.IN. A driver stage coupled to the input node and to a reference node chops V.sub.IN into a square wave under control of a PWM signal. The chopped V.sub.IN signal is coupled to an intermediate output node. An output stage coupled to the intermediate output node converts the chopped V.sub.IN signal to an output voltage V.sub.OUT to a load coupled to an output node. A sense unit coupled to sense a voltage on the intermediate output node generates a voltage signal indicating current flowing in the load.
摘要:
CMOS power device (10) is provided. A tank region (62) is formed in a semiconductor substrate (60). A polysilicon gate layer (34) is disposed above the tank region (62) and defines a plurality of source and drain diffusion openings (38 and 36) having rounded inner corners (40). A plurality of backgate contact regions (42) are segmented and are formed in vacancies in a plurality of source regions (30). Multi-level metallization layers (64 and 66) are disposed above an active device region of the semiconductor substrate (60) and comprise: staggered source contacts (44) and vias (46) alternating along a center line where the source contacts (44) are located above and extend over the backgate contact regions (42), drain contacts (48) and vias (50) alternating along a center line, alternating and offset sets of gate contacts (52) and vias (54) alternating and offset where the sets are offset with respect to adjacent sets, source, drain and gate bussing (14, 16 and 20), and a center gate bus (22) located on a center line of the power device (10) coupled to the gate bussing (20). A plurality of source bond pads (18) and drain bond pads (29) are formed on opposite edges of the power device (10) and are coupled to the source bussing (14) and drain bussing (16), respectively. Thick upper level metallization (24) is disposed above the source bussing (14) and the drain bussing (16) and extends between associated bond pads (18 and 29).
摘要:
A thick copper interconnection structure and method for an LDMOS transistor for power semiconductor devices. A large LDMOS transistor is formed of a plurality of source and drain diffusion regions to be coupled together to form the source and drain. Gate regions are formed between the alternating source and drain diffusions. Each diffusion region has a first metal layer stripe formed over it and in electrical contact with it. A second metal layer conductor is formed over a plurality of the first metal layer stripes, and selectively contacts the first metal layer stripes to form a source and a drain bus. A thick third metal layer is then formed over each second metal layer bus, either physically contacting it or selectively electrically contacting it. The thick third level metal is fabricated of a highly conductive copper layer. The thick third level metal bus substantially lowers the resistance of the LDMOS transistor and further eliminates current debiasing and early failure location problems experienced with LDMOS transistors of the prior art. Other devices and methods are described.
摘要:
An interconnection structure and method for a multiple transistor integrated circuit power device is disclosed. A power integrated circuit is formed of a plurality of source and drain diffusion regions to be coupled together to form the source and drain of multiple LDMOS transistors. Each diffusion region has a first metal layer stripe formed over it and in electrical contact with it. A second metal layer conductor is formed over a plurality of the first metal layer stripes, and selectively contacts the first metal layer stripes to form source and drain busses. Polysilicon gate busses are provided as well. A thick third metal layer is then formed over each second metal layer bus, either physically contacting it or selectively electrically contacting it. The thick third level metal is fabricated of a highly conductive material, such as copper. The resulting on resistance for the transistors on the integrated circuit is substantially reduced by the use of the thick third metal layer. Current debiasing and electromigration problems of the prior art are reduced or eliminated. A seven transistor integrated circuit formed from power transistors and incorporating the invention is described. Other devices, systems and methods are also disclosed.
摘要:
An interconnection structure and method for a multiple transistor integrated circuit power device is disclosed. A power integrated circuit is formed of a plurality of source and drain diffusion regions to be coupled together to form the source and drain of multiple LDMOS transistors. Each diffusion region has a first metal layer stripe formed over it and in electrical contact with it. A second metal layer conductor is formed over a plurality of the first metal layer stripes, and selectively contacts the first metal layer stripes to form source and drain busses. Polysilicon gate busses are provided as well. A thick third metal layer is then formed over each second metal layer bus, either physically contacting it or selectively electrically contacting it. The thick third level metal is fabricated of a highly conductive material, such as copper. The resulting on resistance for the transistors on the integrated circuit is substantially reduced by the use of the thick third metal layer. Current debiasing and electromigration problems of the prior art are reduced or eliminated. A seven transistor integrated circuit formed from power transistors and incorporating the invention is described. Other devices, systems and methods are also disclosed.
摘要:
A plastic packaged integrated circuit (20) having a thick copper plated top surface level interconnection structure. A semiconductor integrated circuit (20) is formed having devices at the surface of a semiconductor substrate (23). First and second metallization layers (27, 31) are formed over the substrate and contacting selected ones of said devices. The first and second levels of metallization may be in contact with one another through vias. A thick top surface level metal interconnect layer (35) is then formed over the second metal layer (31), either physically contacting it or selectively electrically contacting it. The surface level metal (35) is fabricated of a highly conductive copper layer. The thick surface level metal layer (35) substantially lowers the resistance of the interconnect metallization of the device (20) and further eliminates current debiasing and early failure location problems experienced with integrated circuits of the prior art. In one embodiment, the copper surface level interconnect layer (35) is coated with a thin barrier layer of material (37) which may receive a bond wire. The entire structure is then encapsulated in a plastic package (22) such that the plastic is in physical contact with the copper interconnect metal (35). The use of the plastic packaging (22) in physical contact with the copper interconnect metal (35) eliminates the need for the passivation layers of the prior art. Other devices and methods are described.