摘要:
A semiconductor gain medium has an active gain region with a partially patterned radiation diverging region. The partially patterned radiation diverging region may be created with spatial resistive regions formed in a portion of the radiation diverging region having a narrower width than in other portions of the diverging region where the propagating radiation has a greater width. The gain region may be an amplifier or, in addition to the amplifier, may include a resonator cavity, or operate as an unstable resonator.
摘要:
A semiconductor laser having a light amplifying diode heterostructure with a flared gain region in an external resonant cavity. The flared gain region has a narrow aperture end which may be coupled to a single mode waveguide and a wide output end. A light emitting surface of the heterostructure proximate to the wide end of the flared gain region is partially reflective and combines with an external reflector to form a resonant cavity that is effectively unstable. The intracavity light-emitting surface proximate to the narrow aperture end is antireflection coated. The external reflector may be a planar mirror or a grating reflector. A lens or an optical fiber may couple the aperture end of the flared gain region to the external reflector. Frequency-selective feedback is provided by orienting the grating reflector or providing a prism in the cavity in front of the external planar mirror. Other filtering elements may also be placed in the external cavity. The flared gain region and waveguide may be differentially pumped or modulated with current provided by separate contacts.
摘要:
An optical crossbar switch matrix for use in switching optical signals from a first set of optical fibers to a second set of optical fibers, in any order, which is characterized by having a matrix of rows and columns of diffraction gratings formed in a semiconductor heterostructure. Each grating is independently biased with either a forward or reverse bias voltage to switch the grating between a reflective state and a transmissive state. The gratings are oriented at an angle relative to the rows and columns so that when the Bragg condition for the light received from an optical film is met, a portion of the light is diffracted from the row in which it is propagating into a column toward another optical fiber. The heterostructure may include optical amplifiers to restore the optical signal to its original power level. Beam expanding, collimating and focussing optics may also be integrated into the heterostructure.
摘要:
A semiconductor gain medium has an optical cavity comprising a multimode region permitting propagation of light with a diverging phase front and a single mode region. An optical cavity is formed by optical feedback within the medium. Preferably, the feedback comprises a combination of a cleaved facet and a grating. The gain medium may be an amplifier or, in addition to the amplifier, may include a resonator cavity, or operate as an unstable resonator.
摘要:
A semiconductor gain medium has an optical cavity comprising a multimode region permitting propagation of light with a diverging phase front and a single mode region. An optical cavity is formed by optical feedback within the medium. Preferably, the feedback comprises a combination of a cleaved facet and a grating. The gain medium may be an amplifier or, in addition to the amplifier, may include a resonator cavity, or operate as an unstable resonator.
摘要:
A wavelength tunable, semiconductor laser includes a gain region, e.g., a flared amplifier region, that permits light propagation with a diverging phase front along at least a portion of the gain region. Optical feedback defines a resonant laser cavity that has a first reflector at a first end of the cavity a second reflector at a second end of the cavity for reflecting at least a portion of the light back propagating in the cavity back into the cavity. Wavelength tuned selection, such as through orientation of a grating reflector or via a prism, is provided in the resonant laser cavity for producing a relatively lower optical loss in the cavity to a selected wavelength or a band of wavelengths of the light propagating within the cavity relative to other nonselected wavelengths such that stable laser oscillation is established at the selected wavelength or band of wavelengths. A single spatial mode region disposed in the resonant laser cavity with at least a portion modulated independent of the excitation of the gain region can be used to achieve mode locked operation of the laser.
摘要:
A semiconductor laser having a light amplifying diode heterostructure with a flared gain region in an external resonant cavity. The flared gain region has a narrow aperture end which may be coupled to a single mode waveguide and a wide output end. A light emitting surface of the heterostructure proximate to the wide end of the flared gain region is partially reflective and combines with an external reflector to form a resonant cavity that is effectively unstable. The intracavity light-emitting surface proximate to the narrow aperture end is antireflection coated. The external reflector may be a planar mirror or a grating reflector. A lens or an optical fiber may couple the aperture end of the flared gain region to the external reflector. Frequency-selective feedback is provided by orienting the grating reflector or providing a prism in the cavity in front of the external planar mirror. Other filtering elements may also be placed in the external cavity. The flared gain region and waveguide may be differentially pumped or modulated with current provided by separate contacts.
摘要:
A wavelength-stabilized, semiconductor laser having a light amplifying diode heterostructure with a flared gain region in an external resonant cavity. The flared gain region has a narrow aperture end which may be coupled to a single mode waveguide and a wide output end. A light emitting surface of the heterostructure proximate to the wide end of the flared gain region is partially reflective and combines with an external reflector to form a resonant cavity that is effectively unstable. The intracavity light-emitting surface proximate to the narrow aperture end is antireflection coated. The external reflector may be a planar mirror or a grating reflector. A lens or an optical fiber may couple the aperture end of the flared gain region to the external reflector. Frequency-selective feedback is provided by orienting the grating reflector or providing a prism in the cavity in front of the external planar mirror. Other filtering elements may also be placed in the external cavity. The flared gain region and waveguide may be differentially pumped or modulated with current provided by separate contacts.
摘要:
A semiconductor laser having a light amplifying diode heterostructure with a flared gain region in an external resonant cavity. The flared gain region has a narrow aperture end which may be coupled to a single mode waveguide and a wide output end. A light emitting surface of the heterostructure proximate to the wide end of the flared gain region is partially reflective and combines with an external reflector to form a resonant cavity that is effectively unstable. The intracavity light-emitting surface proximate to the narrow aperture end is antireflection coated. The external reflector may be a planar mirror or a grating reflector. A lens or an optical fiber may couple the aperture end of the flared gain region to the external reflector. Frequency-selective feedback is provided by orienting the grating reflector or providing a prism in the cavity in front of the external planar mirror. Other filtering elements may also be placed in the external cavity. The flared gain region and waveguide may be differentially pumped or modulated with current provided by separate contacts.
摘要:
A semiconductor laser having a light amplifying diode heterostructure with a flared gain region in an narrow aperture end whoch may be coupled to a single mode waveguide and a wide output end. A light emitting surface of the heterostructure proximate to the wide end of the flared gain region is partially reflective and combines with an external reflector to form a resonant cavity that is effectively unstable. The intracavity light-emitting surface proximate to the narrow aperture end is antireflection coated. The external reflector may be a planar mirror or a grating reflector. A lens or an optical fiber may couple the aperture end of the flared gain region to the external reflector. Frequency-selective feedback is provided by orienting the grating reflector or providing a prism in the cavity in front of the external planar mirror. Other filtering elements may also be placed in the external cavity. The flared gain region and waveguide may be differentially pumped or modulated with current provided by separate contacts.