摘要:
One embodiment disclosed relates to an electron beam apparatus for inspection of a semiconductor wafer, wherein substantially an entire area of the wafer surface is scanned without moving the stage. A cathode ray tube (CRT) gun may be used to rapidly (and cost effectively) scan the beam over the wafer. Another embodiment disclosed relates to a high-speed automated e-beam inspector configured to scan the e-beam in one dimension while translating the wafer in a perpendicular direction. The translation may be linear, or alternatively, may be in a spiral path. Other embodiments are also disclosed.
摘要:
Methods and systems for measuring a characteristic of a substrate or preparing a substrate for analysis are provided. One method for measuring a characteristic of a substrate includes removing a portion of a feature on the substrate using an electron beam to expose a cross-sectional profile of a remaining portion of the feature. The feature may be a photoresist feature. The method also includes measuring a characteristic of the cross-sectional profile. A method for preparing a substrate for analysis includes removing a portion of a material on the substrate proximate to a defect using chemical etching in combination with an electron beam. The defect may be a subsurface defect or a partially subsurface defect. Another method for preparing a substrate for analysis includes removing a portion of a material on a substrate proximate to a defect using chemical etching in combination with an electron beam and a light beam.
摘要:
A cylindrical mirror or lens is used to focus an input collimated beam of light onto a line on the surface to be inspected, where the line is substantially in the plane of incidence of the focused beam. An image of the beam is projected onto an array of charge-coupled devices parallel to the line for detecting anomalies and/or features of the surface, where the array is outside the plane of incidence of the focused beam.
摘要:
Substrate processing method and apparatus are disclosed. The substrate processing apparatus includes a non-contact air bearing chuck with a vacuum preload.
摘要:
Substrate processing method and apparatus are disclosed. The substrate processing apparatus includes a non-contact air bearing chuck with a vacuum preload.
摘要:
Fourier filters and wafer inspection systems are provided. One embodiment relates to a one-dimensional Fourier filter configured to be included in a bright field inspection system such that the bright field inspection system can be used for broadband dark field inspection of a wafer. The Fourier filter includes an asymmetric illumination aperture configured to be positioned in an illumination path of the inspection system. The Fourier filter also includes an asymmetric imaging aperture complementary to the illumination aperture. The imaging aperture is configured to be positioned in a light collection path of the inspection system such that the imaging aperture blocks light reflected and diffracted from structures on the wafer and allows light scattered from defects on the wafer to pass through the imaging aperture.
摘要:
A compact and versatile multi-spot inspection imaging system employs an objective for focusing an array of radiation beams to a surface and a second reflective or refractive objective having a large numerical aperture for collecting scattered radiation from the array of illuminated spots. The scattered radiation from each illuminated spot is focused to a corresponding optical fiber channel so that information about a scattering may be conveyed to a corresponding detector in a remote detector array for processing. For patterned surface inspection, a cross-shaped filter is rotated along with the surface to reduce the effects of diffraction by Manhattan geometry. A spatial filter in the shape of an annular aperture may also be employed to reduce scattering from patterns such as arrays on the surface. In another embodiment, different portions of the same objective may be used for focusing the illumination beams onto the surface and for collecting the scattered radiation from the illuminated spots simultaneously. In another embodiment, a one-dimensional array of illumination beams are directed at an oblique angle to the surface to illuminate a line of illuminated spots at an angle to the plane of incidence. Radiation scattered from the spots are collected along directions perpendicular to the line of spots or in a double dark field configuration.
摘要:
A curved mirrored surface is used to collect radiation scattered by a sample surface and originating from a normal illumination beam and an oblique illumination beam. The collected radiation is focused to a detector. Scattered radiation originating from the normal and oblique illumination beams may be distinguished by employing radiation at two different wavelengths, by intentionally introducing an offset between the spots illuminated by the two beams or by switching the normal and oblique illumination beams on and off alternately. Beam position error caused by change in sample height may be corrected by detecting specular reflection of an oblique illumination beam and changing the direction of illumination in response thereto. Butterfly-shaped spatial filters may be used in conjunction with curved mirror radiation collectors to restrict detection to certain azimuthal angles.
摘要:
A compact surface inspection optical head is disclosed which comprises a frame with two rings of apertures therein. The first set of apertures surrounding and close to a normal direction to the surface to be inspected is connected to fibers used to collect scattered radiation useful for the detection of micro-scratches caused by chemical and mechanical polishing. Where the position of these apertures is selected to be away from patterned scattering or diffraction, these apertures and their associated fibers may be useful for anomaly detection on patterned surfaces. A second ring of apertures at low elevation angles to the surface inspected is connected to fibers to collect radiation scattered by the surface inspected for anomaly detection on patterned surfaces. This ring of apertures segments azimuthally the collection space so that the signal outputs from detectors that are saturated by the pattern diffraction or scattering may be discarded and only the outputs of unsaturated detectors are used for anomaly detection. A pair of larger apertures in the double dark field positions may be employed for anomaly detection on unpatterned surfaces. Scattered radiation passing through the two larger apertures may be collected by objectives or fiber bundles.
摘要:
A curved mirrored surface is used to collect radiation scattered by a sample surface and originating from a normal illumination beam and an oblique illumination beam. The collected radiation is focused to a detector. Scattered radiation originating from the normal and oblique illumination beams may be distinguished by employing radiation at two different wavelengths, by intentionally introducing an offset between the spots illuminated by the two beams or by switching the normal and oblique illumination beams on and off alternately. Beam position error caused by change in sample height may be corrected by detecting specular reflection of an oblique illumination beam and changing the direction of illumination in response thereto. Butterfly-shaped spatial filters may be used in conjunction with curved mirror radiation collectors to restrict detection to certain azimuthal angles.