Method and apparatus for reducing charge density on a dielectric coated substrate after exposure to a large area electron beam
    2.
    发明授权
    Method and apparatus for reducing charge density on a dielectric coated substrate after exposure to a large area electron beam 失效
    用于在暴露于大面积电子束之后降低电介质涂覆的基底上的电荷密度的方法和装置

    公开(公告)号:US07425716B2

    公开(公告)日:2008-09-16

    申请号:US11414649

    申请日:2006-04-27

    IPC分类号: H02H23/00

    CPC分类号: H01J37/317 H01J2237/0041

    摘要: Embodiments in accordance with the present invention relate to a number of techniques, which may be applied alone or in combination, to reduce charge damage of substrates exposed to electron beam radiation. In one embodiment, charge damage is reduced by establishing a robust electrical connection between the exposed substrate and ground. In another embodiment, charge damage is reduced by modifying the sequence of steps for activating and deactivating the electron beam source to reduce the accumulation of charge on the substrate. In still another embodiment, a plasma is struck in the chamber containing the e-beam treated substrate, thereby removing accumulated charge from the substrate. In a further embodiment of the present invention, the voltage of the anode of the e-beam source is reduced in magnitude to account for differences in electron conversion efficiency exhibited by different cathode materials.

    摘要翻译: 根据本发明的实施例涉及可以单独或组合应用的多种技术,以减少暴露于电子束辐射的衬底的电荷损伤。 在一个实施例中,通过在暴露的基板和地之间建立牢固的电连接来减小电荷损伤。 在另一个实施例中,通过修改用于激活和去激活电子束源的步骤顺序来减少电荷损伤,以减少电荷在衬底上的累积。 在另一个实施例中,在包含电子束处理的衬底的室中撞击等离子体,从而从衬底去除积聚的电荷。 在本发明的另一个实施例中,电子束源的阳极的电压的大小被减小以考虑到由不同的阴极材料表现的电子转换效率的差异。

    Selective metal encapsulation schemes
    3.
    发明授权
    Selective metal encapsulation schemes 失效
    选择性金属封装方案

    公开(公告)号:US07205228B2

    公开(公告)日:2007-04-17

    申请号:US10812480

    申请日:2004-03-30

    IPC分类号: H01L21/44

    摘要: A method and system of processing a semiconductor substrate includes, in one or more embodiments, depositing a protective layer on the substrate surface comprising a conductive element disposed in a dielectric material; processing the protective layer to expose the conductive element; electrolessly depositing a metallic passivating layer onto the conductive element; and removing at least a portion of the protective layer from the substrate after electroless deposition. In another aspect, a method and system of processing a semiconductor includes depositing a metallic passivating layer onto a substrate surface comprising a conductive element, masking the passivating layer to protect the underlying conductive element of the substrate surface, removing the unmasked passivating layer, and removing the mask from the passivating layer.

    摘要翻译: 在一个或多个实施例中,处理半导体衬底的方法和系统包括在衬底表面上沉积保护层,所述保护层包括布置在电介质材料中的导电元件; 处理所述保护层以暴露所述导电元件; 将金属钝化层无电沉积到导电元件上; 以及在无电沉积之后从衬底去除保护层的至少一部分。 在另一方面,一种处理半导体的方法和系统包括在包括导电元件的衬底表面上沉积金属钝化层,掩蔽钝化层以保护衬底表面的下面的导电元件,去除未屏蔽的钝化层,以及去除 掩模从钝化层。

    Electropolishing of metallic interconnects
    6.
    发明授权
    Electropolishing of metallic interconnects 失效
    电抛光金属互连

    公开(公告)号:US06951599B2

    公开(公告)日:2005-10-04

    申请号:US10188163

    申请日:2002-07-01

    IPC分类号: C25F3/16 C25F3/22 C25F7/00

    CPC分类号: C25F3/16 C25F3/22

    摘要: Embodiments of the present invention generally relate to a method and apparatus for planarizing a substrate by electropolishing techniques. Certain embodiments of an electropolishing apparatus include a contact ring adapted to support a substrate, a cell body adapted to hold an electropolishing solution, a fluid supply system adapted to provide the electropolishing solution to the cell body, a cathode disposed within the cell body, a power supply system in electrical communication with the contact ring and the cathode, and a controller coupled to at least the fluid supply system and the power supply system. The controller may be adapted to provide a first set of electropolishing conditions to form a boundary layer between the substrate and the electropolishing solution to an initial thickness and may be adapted to provide a second set of electropolishing conditions to control the boundary layer to a subsequent thickness less than or equal to the initial thickness.

    摘要翻译: 本发明的实施例一般涉及通过电抛光技术来平坦化衬底的方法和装置。 电抛光装置的某些实施例包括适于支撑基底的接触环,适于保持电解抛光溶液的电池体,适于将电解抛光溶液提供给电池体的流体供应系统,设置在电池体内的阴极, 电源系统与接触环和阴极电连通,以及控制器,耦合到至少流体供应系统和电源系统。 控制器可以适于提供第一组电抛光条件,以在衬底和电解抛光溶液之间形成初始厚度的边界层,并且可适于提供第二组电抛光条件以将边界层控制到随后的厚度 小于或等于初始厚度。

    Method of forming submicron contacts
    8.
    发明授权
    Method of forming submicron contacts 失效
    形成亚微米接触的方法

    公开(公告)号:US5582971A

    公开(公告)日:1996-12-10

    申请号:US434371

    申请日:1995-05-03

    摘要: A method is provided for patterning a submicron semiconductor layer of an integrated circuit, and an integrated circuit formed according to the same. A conductive structure is formed on the integrated circuit. A dielectric layer is formed over the integrated circuit. A contact opening is formed in the dielectric layer exposing a portion of the underlying first conductive structure. A barrier layer is formed on the dielectric layer and in the contact opening. A substantially conformal layer is formed over the barrier layer and in the contact opening. The conformal layer is partially etched away wherein the conformal layer remains only in a bottom portion of the contact opening. A second conductive layer is formed over the barrier layer and the remaining conformal layer.

    摘要翻译: 提供了用于图案化集成电路的亚微米半导体层的方法,以及根据该集成电路形成的集成电路。 在集成电路上形成导体结构。 在集成电路上形成介电层。 在电介质层中形成接触开口,暴露下面的第一导电结构的一部分。 在电介质层和接触开口中形成阻挡层。 在阻挡层和接触开口中形成基本上共形的层。 共形层被部分蚀刻掉,其中保形层仅保留在接触开口的底部。 在阻挡层和剩余的保形层上形成第二导电层。

    Interconnect for integrated circuits
    9.
    发明授权
    Interconnect for integrated circuits 失效
    集成电路互连

    公开(公告)号:US5233135A

    公开(公告)日:1993-08-03

    申请号:US722702

    申请日:1991-06-28

    摘要: A technique for forming metal interconnect signal lines provides for planarization of an interlevel dielectric layer. A thin layer of material which can function as an etch stop, such as a metal oxide, is formed over the interlevel dielectric. An alignment process is used to pattern and define openings through the etch stop layer where contacts to underlying conductive regions will be formed. Another insulating layer is formed over the etch stop layer, and patterned to define all interconnect signal lines. When the signal line locations are etched away, the etching process stops on the etch stop layer in regions where the signal lines will be, and continues through to the underlying conductive layer where contacts are needed. A metal refill process can be used to then form interconnects and contacts within the etched holes, followed by an anisotropic etchback to remove any metal which lies on top of the upper insulating layer. This results in interconnect and contacts having upper surfaces which are substantially coplanar with the upper insulating layer in which they are formed.

    Interconnect and resistor for integrated circuits
    10.
    发明授权
    Interconnect and resistor for integrated circuits 失效
    集成电路的互连和电阻

    公开(公告)号:US5182627A

    公开(公告)日:1993-01-26

    申请号:US769171

    申请日:1991-09-30

    摘要: A method is provided for forming a polycrystalline silicon resistive load element of a semiconductor integrated circuit, and an integrated circuit formed according to the same. A lightly doped first conductive layer having a conductivity of a first type. A first oxide layer is formed over the integrated circuit with a first opening therethrough exposing a portion of the first conductive layer. Using the first oxide layer as a mask, the exposed portion of the first conductive layer is then implanted with a dopant of a second conductivity type to form a junction between the exposed portion and the portion covered by the mask. A second oxide region is then formed on a portion of the first oxide layer in the first opening, over the junction and over a portion of the exposed first conductive layer adjacent to the junction. A silicide is formed over the exposed portion of the first conductive layer.