摘要:
A vertical isolated-collector PNP transistor structure (58) comprises a P+ region (45), a N region (44) and a P- well region (46) which form the emitter, the base and the collector, respectively. The P- well region is enclosed in a N type pocket comprised of a N+ buried layer (48) and a N reach-through region (47) in contact therewith. The contact regions (46-1, 47-1) to the P- well region (46) and to the N reach-through region (47) are shorted to define a common collector contact (59). In addition, the thickness W of the P- well region (46) is so minimized to allow transistor action of the parasitic NPN transistor formed by N PNP base region (44), P- well region (46) and the N+ buried layer, (48) respectively as the collector, the base and the emitter of said PNP transistor. The PNP transistor structure (67) may be combined with a conventional NPN transistor structure (61).
摘要:
The present invention relates to fast complementary emitter follower drivers/buffers to be used in either a CMOS or pure complementary bipolar environment. The output driver (22) comprises top NPN and bottom PNP output transistors (T1, T2) with a common output node (N) connected therebetween. A terminal (15) is connected to the said output node (N) where the output signal (VOUT) is available. The pair of bipolar output transistors is biased between the first and second supply voltages (VH, GND). The output driver is provided with a voltage translator circuit (S) connected between the base nodes (B1, B2) of the output transistors (T1, T2). Logic signals (IN1, IN2), supplied by a preceding driving circuit (21), are applied to said base nodes. According to the invention, the voltage translator circuit (S) comprises two diodes (D1, D2) connected in series, preferably implemented with a main bipolar transistor having a junction shorted by a diode connected transistor to form a Darlington-like configuration. As a result, the voltage shift VS between the base nodes is selected to have the said output transistors operating at an operating point which ensures minimum delay and power consumption. In a typical bipolar technology, VS is made to be approximately equal to 1.5V. Additional features comprise the connection of a capacitor (C) between the base nodes and resistances (R1, R2) to the base nodes. The preceding driving circuit may be a CMOS logic gate or an ECL logic circuit.
摘要:
The present invention relates to a family of new GaAs MESFET logic circuits including push pull output buffers, which exhibits very strong output driving capability and very low power consumption at fast switching speeds. A 3 way OR/NOR circuit of this invention includes a standard differential amplifier, the first branch of which is controlled by logic input signals. The second branch includes a current switch controlled by a reference voltage. The differential amplifier provides first and second output signals simultaneously and complementary each other. The circuit further includes two push pull output buffers. The first output buffer comprises an active pull up device connected in series with an active pull down device, and the first circuit output signal is available at their common node or at the output terminal. The active pull up device is controlled by a first output signal of the differential amplifier, and the active pull down device is preferably controlled by the second output signal through an intermediate source follower buffer. The second output buffer is of similar structure. The depicted circuit is of the dual phase type. However, if only one phase of the circuit output signal is needed, the output buffer and the intermediate buffer can be eliminated. The number of devices can be even further reduced by eliminating the other remaining intermediate buffer.
摘要:
The base circuit comprises a self-referenced preamplifier (31) of the differential type connected between first and second supply voltages and a push-pull output buffer stage connected between second and third supply voltages. The push-pull output buffer stage comprises a pull-up transistor and a pull-down transistor connected in series with the circuit output node coupled therebetween. These transistors are driven by complementary and substantially simultaneous signals S and S supplied by the preamplifier. Both branches of the preamplifier are tied at a first output node (M). The first branch comprises a logic block performing the desired logic function of the base circuit that is connected through a load rsistor to the second supply voltage. The logic block consists of three parallel-connected input NPN transistors, whose emitters are coupled together at the first output node for NOR operation. The second branch is comprised of a biasing/coupling block connected to the second supply voltage and coupled to the first output node and to the base (B) node of the pull-down transistor. This block ensures both the appropriate polarization of the nodes in DC without the need of external reference voltage generators and a low impedance path for fast signal transmission of the output signal from node M to node B in AC, when input transistors of the logic block are ON. and base nodes. An anti-saturation block (AB), consisting typically of a Schottky Barrier Diode (SBD), is useful to prevent saturation of the pull down transistor (TDN) to further speed up the circuit.
摘要:
According to the present invention, a CMOS interface circuit (C2) similar to a latch made by two CMOS cross coupled inverters (INV1, INV2) is placed directly on the output node (14) of conventional BICMOS logic circuit (11) operating alone in a partial swing mode. This latch is made of four FETs P5, P6, N8, N9 cross-coupled in a conventional way with the feedback loop connected to said output node (14). The partial voltage swing (VBE to VH-VBE) naturally given by the output bipolar transistors (T1, T2) mounted in a push pull configuration is reinforced to full swing (GND to VH) by the latch at the end of each transition. The state of the output node if forced by the latch because of the high driving capability due to the presence of said output bipolar transistors (T1, T2). As a result, the improved BICMOS logic circuit (D2) has an output signal (S) that ranges within the desired full swing voltage at the output terminal (15). It is a characteristic of this embodiment that the structure of CMOS interface (C2) is always independent of the logic function implemented in the conventional BICMOS logic circuit (11). More generally, the CMOS interface circuit may have various physical implementations, however, it is always comprised of CMOS FETs and it becomes active at least in one of the GND to VBE or (VH-BE) to VH range.
摘要:
An improved Artificial Neural Network (ANN) is disclosed that comprises a conventional ANN, a database block, and a compare and update circuit. The conventional ANN is formed by a plurality of neurons, each neuron having a prototype memory dedicated to store a prototype and a distance evaluator to evaluate the distance between the input pattern presented to the ANN and the prototype stored therein. The database block has: all the prototypes arranged in slices, each slice being capable to store up to a maximum number of prototypes; the input patterns or queries to be presented to the ANN; and the distances resulting of the evaluation performed during the recognition/classification phase. The compare and update circuit compares the distance with the distance previously found for the same input pattern updates or not the distance previously stored.
摘要:
A parallel pattern detection engine (PPDE) comprise multiple processing units (PUs) customized to do various modes of pattern recognition. The PUs are loaded with different patterns and the input data to be matched is provided to the PUs in parallel. Each pattern has an Opcode that defines what action to take when a particular data in the input data stream either matches or does not match the corresponding data being compared during a clock cycle. Each of the PUs communicate selected information so that PUs may be cascaded to enable longer patterns to be matched or to allow more patterns to be processed in parallel for a particular input data stream.
摘要:
An intrusion detection system (IDS) comprises a network processor (NP) coupled to a memory unit for storing programs and data. The NP is also coupled to one or more parallel pattern detection engines (PPDE) which provide high speed parallel detection of patterns in an input data stream. Each PPDE comprises many processing units (PUs) each designed to store intrusion signatures as a sequence of data with selected operation codes. The PUs have configuration registers for selecting modes of pattern recognition. Each PU compares a byte at each clock cycle. If a sequence of bytes from the input pattern match a stored pattern, the identification of the PU detecting the pattern is outputted with any applicable comparison data. By storing intrusion signatures in many parallel PUs, the IDS can process network data at the NP processing speed. PUs may be cascaded to increase intrusion coverage or to detect long intrusion signatures.
摘要:
The improved neural network of the present invention results from the combination of a dedicated logic block with a conventional neural network based upon a mapping of the input space usually employed to classify an input data by computing the distance between said input data and prototypes memorized therein. The improved neural network is able to classify an input data, for instance, represented by a vector A even when some of its components are noisy or unknown during either the learning or the recognition phase. To that end, influence fields of various and different shapes are created for each neuron of the conventional neural network. The logic block transforms at least some of the n components (A1, . . . , An) of the input vector A into the m components (V1, . . . , Vm) of a network input vector V according to a linear or non-linear transform function F. In turn, vector V is applied as the input data to said conventional neural network. The transform function F is such that certain components of vector V are not modified, e.g. Vk=Aj, while other components are transformed as mentioned above, e.g. Vi=Fi(A1, . . . , An). In addition, one (or more) component of vector V can be used to compensate an offset that is present in the distance evaluation of vector V. Because, the logic block is placed in front of the said conventional neural network any modification thereof is avoided.
摘要:
A method for forming a capacitive structure in a metal level of an interconnection stack including a succession of metal levels and of via levels, including the steps of: forming, in the metal level, at least one conductive track in which a trench is defined; conformally forming an insulating layer on the structure; forming, in the trench, a conductive material; and planarizing the structure.