摘要:
A semiconductor device includes a first emitter region of a first conductivity type, a second emitter region of a second conductivity type complementary to the first type, a drift region of the second conductivity type, and a first electrode. The first and second emitter regions are arranged between the drift region and first electrode and each connected to the first electrode. A device cell of a cell region includes a body region of the first conductivity type adjoining the drift region, a source region of the second conductivity type adjoining the body region, and a gate electrode adjacent the body region and dielectrically insulated from the body region by a gate dielectric. A second electrode is electrically connected to the source and body regions. A parasitic region of the first conductivity type is disposed outside the cell region and includes at least one section with charge carrier lifetime reduction means.
摘要:
A semiconductor device includes a first emitter region of a first conductivity type, a second emitter region of a second conductivity type complementary to the first type, a drift region of the second conductivity type, and a first electrode. The first and second emitter regions are arranged between the drift region and first electrode and each connected to the first electrode. A device cell of a cell region includes a body region of the first conductivity type adjoining the drift region, a source region of the second conductivity type adjoining the body region, and a gate electrode adjacent the body region and dielectrically insulated from the body region by a gate dielectric. A second electrode is electrically connected to the source and body regions. A parasitic region of the first conductivity type is disposed outside the cell region and includes at least one section with charge carrier lifetime reduction means.
摘要:
A semiconductor includes a drift zone of a first conductivity type arranged between a first side and a second side of a semiconductor body. The semiconductor device further includes a first region of the first conductivity type and a second region of a second conductivity type subsequently arranged along a first direction parallel to the second side. The semiconductor device further includes an electrode at the second side adjoining the first and second regions. The semiconductor device further includes a third region of the second conductivity type arranged between the drift zone and the first region. The third region is spaced apart from the second region and from the second side.
摘要:
A semiconductor includes a drift zone of a first conductivity type arranged between a first side and a second side of a semiconductor body. The semiconductor device further includes a first region of the first conductivity type and a second region of a second conductivity type subsequently arranged along a first direction parallel to the second side. The semiconductor device further includes an electrode at the second side adjoining the first and second regions. The semiconductor device further includes a third region of the second conductivity type arranged between the drift zone and the first region. The third region is spaced apart from the second region and from the second side.
摘要:
A semiconductor device includes a first emitter region of a first conductivity type, a second emitter region of a second conductivity type complementary to the first conductivity type, and a drift region of the second conductivity type arranged in a semiconductor body. The first and second emitter regions are arranged between the drift region and a first electrode and are each connected to the first electrode. A device cell of a cell region includes a body region of the first conductivity type adjoining the drift region, a source region of the second conductivity type adjoining the body region, and a gate electrode adjacent the body region and dielectrically insulated from the body region by a gate dielectric. A second electrode is electrically connected to the source region and the body region. A floating parasitic region of the first conductivity type is disposed outside the cell region.
摘要:
A semiconductor device in one embodiment has a first connection region, a second connection region and a semiconductor volume arranged between the first and second connection regions. Provision is made, within the semiconductor volume, in the vicinity of the second connection region, of a field stop zone for spatially delimiting a space charge zone that can be formed in the semiconductor volume, and of an anode region adjoining the first connection region. The dopant concentration profile within the semiconductor volume is configured such that the integral of the ionized dopant charge over the semiconductor volume, proceeding from an interface of the anode region which faces the second connection region, in the direction of the second connection region, reaches a quantity of charge corresponding to the breakdown charge of the semiconductor device only near the interface of the field stop zone which faces the second connection region.
摘要:
A semiconductor component with a drift region and a drift control region. One embodiment includes a semiconductor body having a drift region of a first conduction type in the semiconductor body. A drift control region composed of a semiconductor material, which is arranged, at least in sections, is adjacent to the drift region in the semiconductor body. An accumulation dielectric is arranged between the drift region and the drift control region.
摘要:
Disclosed is a method for controlling the recombination rate in the base region of a bipolar semiconductor component, and a bipolar semiconductor component.
摘要:
A semiconductor device in the form of an IGBT has a front side contact, a rear side contact, and a semiconductor volume disposed between the front side contact and the rear side contact. The semiconductor volume includes a field stop layer for spatially delimiting an electric field that can be formed in the semiconductor volume. The semiconductor volume further includes a plurality of semiconductor zones, the plurality of semiconductor zones spaced apart from each other and each inversely doped with respect to adjacent areas. The plurality of semiconductor zones are located within the field stop layer.
摘要:
A semiconductor component with charge compensation structure has a semiconductor body having a drift path between two electrodes. The drift path has drift zones of a first conduction type, which provide a current path between the electrodes in the drift path, while charge compensation zones of a complementary conduction type constrict the current path of the drift path. For this purpose, the drift path has two alternately arranged, epitaxially grown diffusion zone types, the first drift zone type having monocrystalline semiconductor material on a monocrystalline substrate, and a second drift zone type having monocrystalline semiconductor material in a trench structure, with complementarily doped walls, the complementarily doped walls forming the charge compensation zones.