摘要:
An improved and new structure and method for forming a guard ring in an integrated circuit having at least one level of polysilicon wiring has been developed. The guard ring is formed without necessitating additional manufacturing process steps and the guard ring is bonded to the semiconductor substrate, thereby providing a superior barrier to diffusion of moisture and contaminants from a window in the insulating layers to the semiconductor device regions.
摘要:
An SRAM device has STI regions separated by mesas and doped regions including source/drain regions, active areas, wordline conductors and contacts in a semiconductor substrate is made with a source region has 90° transitions in critical locations. Form a dielectric layer above the active areas. Form the wordline conductors above the active areas transverse to the active areas. The source and drain regions of a pass gate transistor are on the opposite sides of a wordline conductor. Form the sidewalls along the crystal plane. Form the contacts extending down through to the dielectric layer to the mesas. Substrate stress is reduced because the large active area region formed in the substrate assures that the contacts are formed on the surfaces of the mesas are in contact with the mesas formed on the substrate and that the surfaces of the silicon of the mesas are shielded from the contacts.
摘要:
An SRAM device has STI regions separated by mesas and doped regions including source/drain regions, active areas, wordline conductors and contacts in a semiconductor substrate is made with a source region has 90.degree. transitions in critical locations. Form a dielectric layer above the active areas. Form the wordline conductors above the active areas transverse to the active areas. The source and drain regions of a pass gate transistor are on the opposite sides of a wordline conductor. Form the sidewalls along the crystal plane. Form the contacts extending down through to the dielectric layer to the mesas. Substrate stress is reduced because the large active area region formed in the substrate assures that the contacts are formed on the surfaces of the mesas are in contact with the mesas formed on the substrate and that the surfaces of the silicon of the mesas are shielded from the contacts.
摘要:
The present invention provides a novel method for fabricating a buried contact extending under the first conductive layer 16 and subjacent first insulating layer 14. A first insulating layer 14 and a first conductive layer are formed over a silicon substrate 10 having isolation structures 12. A photoresist mask 18A having a buried contact opening 20 is formed over the first conductive layer. The first conductive layer 16 and the first insulating layer 14 are etched through the photoresist mask 18A. A width 21 of the photoresist mask 18A adjacent to the buried contact opening 20 is removed using a descum process, thereby forming an expanded opening 20A and an exposed ring 16A of the first conductive layer 16 with subjacent first insulating layer 14. Impurity ions 23 are implanted through the expanded opening 20A at a sufficient energy level to form a novel buried contact region 22 comprising an extended buried contact region 22A extending under the exposed ring 16A of the first conductive layer 16 and an exposed area 22B where the first conductive layer and the first insulating layer were removed. The photoresist mask 18A is removed. A second conductive layer 24 and a polycide layer 26 are formed over the first conductive layer 16 and over the exposed area 22B of the buried contact region 22. The polycide layer 26, the second conductive layer 24, the first conductive layer 16 and the first insulating layer 14 are patterned to form a second opening 30 partially overlapping the extended buried contact region and defining a gate structure 31 and a contact structure 33. Lightly doped source/drain regions 32, sidewall spacers 34, and source/drain structures 38 are formed.
摘要:
A new method of forming an improved buried contact junction is described. A gate oxide layer is provided over the surface of a semiconductor substrate. A first polysilicon layer is deposited over the gate oxide layer. A photoresist mask is formed over the first polysilicon layer having an opening over the planned buried contact. The first polysilicon layer not covered by the photoresist mask is etched away. A portion of the photoresist mask at the edges of the opening is cut away to expose a portion of the first polysilicon layer at the edges of the opening. The gate oxide layer not covered by the mask is etched away using a reduced etching selectivity of oxide to silicon so that an upper portion of the first polysilicon layer exposed at the edges of the opening is etched away leaving a thinner first polysilicon layer at the edges of the opening. Ions are implanted through the opening and through the thinner first polysilicon layer into the semiconductor substrate to form the buried contact. The photoresist mask is removed and a second polysilicon layer is deposited overlying the first polysilicon layer and the buried contact to complete formation of the buried contact.
摘要:
System and method for providing a light shield for a CMOS imager is provided. The light shield comprises a structure formed above a point between a photo-sensitive element and adjacent circuitry. The structure is formed of a light-blocking material, such as a metal, metal alloy, metal compound, or the like, formed in dielectric layers over the photo-sensitive elements.
摘要:
A CMOS image sensor having increased capacitance that allows a photo-diode to generate a larger current is provided. The increased capacitance reduces noise and the dark signal. The image sensor utilizes a transistor having nitride spacers formed on a buffer oxide layer. Additional capacitance may be provided by various capacitor structures, such as a stacked capacitor, a planar capacitor, a trench capacitor, a MOS capacitor, a MIM/PIP capacitor, or the like. Embodiments of the present invention may be utilized in a 4-transistor pixel or a 3-transistor pixel configuration.
摘要:
The present disclosure provides a method of making an integrated circuit (IC). The method includes forming an electric device on a front side of a substrate; forming a top metal pad on the front side of the substrate, the top metal pad being coupled to the electric device; forming a passivation layer on the front side of the substrate, the top metal pad being embedded in the passivation layer; forming an opening in the passivation layer, exposing the top metal pad; forming a deep trench in the substrate; filling a conductive material in the deep trench and the opening, resulting in a though-wafer via (TWV) feature in the deep trench and a pad-TWV feature in the opening, where the top metal pad being connected to the TWV feature through the pad-TWV feature; and applying a polishing process to remove excessive conductive material, forming a substantially planar surface.
摘要:
The present disclosure provides a backside illuminated semiconductor device. The device includes a substrate having a front surface and a back surface; a plurality of sensor elements formed in the substrate, each of the plurality of sensor elements is designed and configured to receive light directed towards the back surface; and a sensor isolation feature formed in the substrate, and disposed horizontally between two adjacent elements of the plurality of sensor elements, and vertically between the back surface and the front surface.
摘要:
Provided are a semiconductor device and a method for its manufacture. In one example, the method includes forming an isolation structure having a first refraction index over a sensor embedded in a substrate. A first layer having a second refraction index that is different from the first refraction index is formed over the isolation structure. The first layer is removed from at least a portion of the isolation structure. A second layer having a third refraction index is formed over the isolation structure after the first layer is removed. The third refraction index is substantially similar to the first refraction index.