摘要:
Methods for monitoring and detecting optical emissions while performing photoresist stripping and removal of residues from a substrate or a film stack on a substrate are provided herein. In one embodiment, a method is provided that includes positioning a substrate comprising a photoresist layer into a processing chamber; processing the photoresist layer using a multiple step plasma process; and monitoring the plasma for a hydrogen optical emission during the multiple step plasma process; wherein the multiple step plasma process includes removing a bulk of the photoresist layer using a bulk removal step; and switching to an overetch step in response to the monitored hydrogen optical emission.
摘要:
One embodiment of the present invention is a stripping reactor that includes: (a) a remote plasma source disposed to output a gas; (b) a gas distribution plate connected to ground that transmits the gas output from the remote plasma source to a processing chamber; (c) a wafer support disposed in the processing chamber; (d) a wafer support assembly disposed about the wafer pedestal that includes an outer conductive peripheral structure connected to ground; and (e) an RF power supply connected to supply RF power to the wafer support.
摘要:
Embodiments of the invention provide methods of applying a liquid to a backside of a substrate to bring the substrate to the temperature of the liquid. By controlling the temperature of the substrate the temperature of the semiconductor processing liquid may be maintained at a particular temperature or a type of reaction occurring in the semiconductor processing liquid may be enhanced or maintained, such as in reactions where relatively small amounts of liquid are used or expensive chemicals are used.
摘要:
A method and system of hybrid dicing using a blade and laser are described. In one embodiment, a method involves focusing a laser beam inside the substrate in regions between the integrated circuits, inducing defects inside the substrate in the regions. The method also involves forming a groove on a surface of the substrate with a blade saw in the regions. The method further involves singulating the integrated circuits at the regions with the induced defects and the groove. In one embodiment, a system includes a laser module configured to focus a laser beam inside the substrate in regions between the integrated circuits, inducing defects inside the substrate in the regions. A blade grooving module is configured to form a groove in a surface of the substrate with a blade saw in the regions.
摘要:
Cleaning solutions and cleaning methods targeted to particular substrates and structures in semiconductor fabrication are described. A method of cleaning fragile structures having a dimension less than 0.15 um with a cleaning solution formed of a solvent having a surface tension less than water while applying acoustic energy to the substrate on which the structures are formed is described. Also, a method of cleaning copper with several different cleaning solutions, and in particular an aqueous sulfuric acid and HF cleaning solution, is described. Also, methods of cleaning both sides of a substrate at the same time with different cleaning solutions applied to the top and the bottom are described.
摘要:
An integrated substrate cleaning processes capable of removing residues and particulates from the surface of a photomask is described. In one embodiment, an ozonated de-ionized water treatment is the first wet cleaning operation. In an embodiment of the present invention, the substrate cleaning process includes a wet cleaning operation employing an ammonium hydroxide-based chemical cleaning solution diluted with hydrogenated de-ionized water. In another embodiment of the present invention, the substrate cleaning process uses a plasma treatment prior to the first wet cleaning operation.
摘要:
A combination of a dry oxidizing, wet etching, and wet cleaning processes are used to remove particle defects from a wafer after ion implantation, as part of a wafer bonding process to fabricate a SOI wafer. The particle defects on the topside and the backside of the wafer are oxidized, in a dry strip chamber, with an energized gas. In a wet clean chamber, the backside of the wafer is treated with an etchant solution to remove completely or partially a thermal silicon oxide layer, followed by exposure of the topside and the backside to a cleaning solution. The cleaning solution contains ammonium hydroxide, hydrogen peroxide, DI water, and optionally a chelating agent, and a surfactant. The wet clean chamber is integrated with the dry strip chamber and contained in a single wafer processing system.
摘要:
Embodiments of the invention provide methods of applying a liquid to a backside of a substrate to bring the substrate to the temperature of the liquid. By controlling the temperature of the substrate the temperature of the semiconductor processing liquid may be maintained at a particular temperature or a type of reaction occurring in the semiconductor processing liquid may be enhanced or maintained, such as in reactions where relatively small amounts of liquid are used or expensive chemicals are used.
摘要:
A combination of a dry oxidizing, wet etching, and wet cleaning processes are used to remove particle defects from a wafer after ion implantation, as part of a wafer bonding process to fabricate a SOI wafer. The particle defects on the topside and the backside of the wafer are oxidized, in a dry strip chamber, with an energized gas. In a wet clean chamber, the backside of the wafer is treated with an etchant solution to remove completely or partially a thermal silicon oxide layer, followed by exposure of the topside and the backside to a cleaning solution. The cleaning solution contains ammonium hydroxide, hydrogen peroxide, DI water, and optionally a chelating agent, and a surfactant. The wet clean chamber is integrated with the dry strip chamber and contained in a single wafer processing system.
摘要:
The invention is carried out in a plasma reactor for processing a semiconductor wafer, the plasma reactor having a chamber for containing a processing gas and having a conductor connected to an RF power source for coupling RF power into the reactor chamber to generate from the processing gas a plasma inside the chamber, the chamber containing at least one surface exposed toward the plasma and susceptible to contamination by particles produced during processing of the wafer, the invention being carried out by promoting, during processing of the wafer, bombarding of particles from the plasma onto the one surface to remove therefrom contaminants deposited during processing of the wafer. Such promoting of bombarding is carried out by providing an RF power supply and coupling, during processing of the wafer, RF power from the supply to the one surface. The coupling may be performed by a capacitive cleaning electrode adjacent the one surface, the capacitive cleaning electrode connected to the RF power supply. The capacitive cleaning electrode preferably is disposed on a side of the one surface opposite the plasma so as to be protected from contact with the plasma. Alternatively, the coupling may be carried out by a direct electrical connection from the RF power supply to the one surface.