摘要:
Field oxide regions are formed between drive regions of a silicon substrate by forming over the substrate a sandwich of silicon dioxide, silicon nitride and silicon dioxide layers, opening the layers to expose a portion of the silicon substrate, removing a layer of the exposed substrate, forming side wall spacers on the edges of the opening, removing a layer of the silicon substrate exposed between the side wall spacers, and then reaching the exposed substrate for the thermal oxidation of the exposed substrate for forming the field oxide region. In those structures in which the field oxide is buried in the substrate as shown in FIG. 12, it may be feasible to use thicker field oxide regions and thereby to reduce the need for the heavily doped surface layer under the field oxide.
摘要:
A method for making a CMOS integrated circuit device saves on masking steps by using unmasked blanket implantations at various steps of the process, such as setting the threshold voltages of the transistors, forming a lightly doped drain for the N-channel transistor, and for forming the source/drain regions of the N-type transistor.
摘要:
Field oxide regions are formed between active regions of a silicon substrate by forming over the substrate a sandwich of silicon dioxide, silicon nitride and silicon dioxide layers, opening the layers to expose a portion of the silicon substrate, removing a layer of the exposed substrate, forming side wall spacers on the edges of the opening, removing a layer of the silicon substrate exposed between the side wall spacers, and then reaching the exposed substrate for the thermal oxidation of the exposed substrate for forming the field oxide region. In those structures in which the field oxide is buried in the substrate as shown in FIG. 12, it may be feasible to use thicker field oxide regions and thereby to reduce the need for the heavily doped surface layer under the field oxide.
摘要:
A method for fabrication of metal to semiconductor contacts results in sloped sidewalls in contact regions. An oxide layer is deposited and etched back to form sidewall spacers. A glass layer is then deposited and heated to reflow. After reflow, an etch back of the glass layer results is sloped sidewalls at contact openings and over steps.
摘要:
A method for forming a connection between two levels in a semiconductor structure includes first forming a VIA (14) through an insulating layer (12) to an underlying structure (10). Sidewall spacers (22) and (24) are formed on the vertical walls of the VIA (14). The spacers (22) and (24) have tapered surfaces. A barrier layer (30) is then formed over the bottom surface of the VIA followed by CVD deposition of a conductive layer (32) of WSi.sub.2 to provide a conformal conductive layer. An aluminum layer (38) is then deposited by physical vapor deposition techniques with the descending portions of layer (32) providing a conductive connection between the aluminum layer (38) and the lower structure (10) in the VIA (14).
摘要:
A method for forming a connection between two levels in a semiconductor structure includes first forming a VIA (14) through an insulating layer (12) to an underlying structure (10). Sidewall spacers (22) and (24) are formed on the vertical walls of the VIA (14). The spacers (22) and (24) have tapered surfaces. A barrier layer (30) is then formed over the bottom surface of the VIA followed by CVD deposition of a conductive layer (32) of WSi.sub.2 to provide a conformal conductive layer. An aluminum layer (38) is then deposited by physical vapor deposition techniques with the descending portions of layer (32) providing a conductive connection between the aluminum layer (38) and the lower structure (10) in the VIA (14).
摘要:
In the manufacture of an integrated circuit, contaminated oxide is replaced by relatively pure oxide using the following steps. First, a partially manufactured integrated circuit is bathed in an aqueous solution of hydrogen peroxide and ammonium hydroxide to oxidize organic materials and weaken bonds of metal contaminants to the integrated circuit substrate. Second, an aqueous rinse removes the oxidized organic materials and metal contaminants. Third, the integrated circuit is bathed in an aqueous solution of hydrogen fluoride and nitric acid. The hydrogen fluroide etches the contaminated oxide; the nitric acid combines with calcium and metal contaminants freed as the oxide is etched. The resulting nitride byproducts are highly soluble and easily removed in the following aqueous rinse. A drying step removes rinse water from the integrated circuit. Finally, an oxide formation step provides a relatively pure oxide layer. In the case of a gate oxide, the method removes a sacrificial oxide in preparation for gate oxide growth. In the case of formation of the submetal dielectric, oxide formation involves an TEOS oxide deposition. A key advantage of the invention is the improved calcium removal due to the nitric acid.
摘要:
A process for forming electrical interconnect on MOS semiconductor integrated circuits includes the formation of a capping layer of oxide over the first level poly layer prior to patterning. The capping layer is then removed over selected regions. The conductive layer and capping oxide layer are then patterned to form transistor gates and interconnect. Source/drain regions are formed in active areas of the integrated circuit, and sidewall oxide is formed next to the patterned gate regions. When a second layer of interconnect is formed and patterned over the integrated circuit, contact between the first and second interconnect layers is made in the previously defined selected regions.
摘要:
In the manufacture of an integrated circuit, contaminated oxide is replaced by relatively pure oxide using the following steps. First, a partially manufactured integrated circuit is bathed in an aqueous solution of hydrogen peroxide and ammonium hydroxide to oxidize organic materials and weaken bonds of metal contaminants to the integrated circuit substrate. Second, an aqueous rinse removes the oxidized organic materials and metal contaminants. Third, the integrated circuit is bathed in an aqueous solution of hydrogen fluoride and nitric acid. The hydrogen fluroide etches the contaminated oxide; the nitric acid combines with calcium and metal contaminants freed as the oxide is etched. The resulting nitride byproducts are highly soluble and easily removed in the following aqueous rinse. A drying step removes rinse water from the integrated circuit. Finally, an oxide formation step provides a relatively pure oxide layer. In the case of a gate oxide, the method removes a sacrificial oxide in preparation for gate oxide growth. In the case of formation of the submetal dielectric, oxide formation involves an TEOS oxide deposition. A key advantage of the invention is the improved calcium removal due to the nitric acid.
摘要:
An integrated circuit having a semiconductor substrate and an anti-fuse structure formed on the semiconductor substrate. The anti-fuse structure includes a metal-one layer and an anti-fuse layer disposed above the metal-one layer. The anti-fuse layer has a first resistance value when the anti-fuse structure is unprogrammed and a second resistance value lower than the first resistance value when the anti-fuse structure is programmed. There is further provided an etch stop layer disposed above the anti-fuse layer, and an inter-metal oxide layer disposed above the etch stop layer with the inter-metal oxide layer has a via formed therein. Additionally, there is further provided a metal-two layer disposed above the inter-metal oxide layer. In this structure, a portion of the metal-two layer is in electrical contact with the anti-fuse layer through the via in the inter-metal oxide layer.