摘要:
A nonvolatile memory device includes multiple independent nonvolatile memory arrays that concurrently for parallel reading and writing the nonvolatile memory arrays. A parallel interface communicates commands, address, device status, and data between a master device and nonvolatile memory arrays for concurrently reading and writing of the nonvolatile memory arrays and sub-arrays. Data is transferred on the parallel interface at the rising edge and the falling edge of the synchronizing clock. The parallel interface transmits a command code and an address code from a master device and transfers a data code between the master device and the nonvolatile memory device, wherein the data code has a length that is determined by the command code and a location determined by the address code. Reading one nonvolatile memory array may be interrupted for reading another. One reading operation has two sub-addresses with one transferred prior to a command.
摘要:
A nonvolatile memory device includes multiple independent nonvolatile memory arrays that concurrently for parallel reading and writing the nonvolatile memory arrays. A parallel interface communicates commands, address, device status, and data between a master device and nonvolatile memory arrays for concurrently reading and writing of the nonvolatile memory arrays and sub-arrays. Data is transferred on the parallel interface at the rising edge and the falling edge of the synchronizing clock. The parallel interface transmits a command code and an address code from a master device and transfers a data code between the master device and the nonvolatile memory device, wherein the data code has a length that is determined by the command code and a location determined by the address code. Reading one nonvolatile memory array may be interrupted for reading another. One reading operation has two sub-addresses with one transferred prior to a command.
摘要:
A nonvolatile memory array has a single transistor flash memory cell and a two transistor EEPROM memory cell which maybe integrated on the same substrate. The nonvolatile memory cell has a floating gate with a low coupling coefficient to permit a smaller memory cell. The floating gate placed over a tunneling insulation layer, the floating gate is aligned with edges of the source region and the drain region and having a width defined by a width of the edges of the source the drain. The floating gate and control gate have a relatively small coupling ratio of less than 50% to allow scaling of the nonvolatile memory cells. The nonvolatile memory cells are programmed with channel hot electron programming and erased with Fowler Nordheim tunneling at relatively high voltages.
摘要:
A novel FLASH-based EEPROM cell, decoder, and layout scheme are disclosed to eliminate the area-consuming divided triple-well in cell array and allows byte-erase and byte-program for high P/E cycles. Furthermore, the process-compatible FLASH cell for EEPROM part can be integrated with FLASH and ROM parts so that a superior combo, monolithic, nonvolatile memory is achieved. Unlike all previous arts, the novel combo nonvolatile memory of the present invention of ROM, EEPROM and FLASH or combination of any two is made of one unified, fully compatible, highly-scalable BN+ cell and unified process. In addition, its cell operation schemes have zero array overhead and zero disturbance during P/E operations. The novel combo nonvolatile memory is designed to meet the need in those markets requiring flexible write size in units of bytes, pages and blocks at a lower cost.
摘要:
A novel FLASH-based EEPROM cell, decoder, and layout scheme are disclosed to eliminate the area-consuming divided triple-well in cell array and allows byte-erase and byte-program for high P/E cycles. Furthermore, the process-compatible FLASH cell for EEPROM part can be integrated with FLASH and ROM parts so that a superior combo, monolithic, nonvolatile memory is achieved. Unlike all previous arts, the novel combo nonvolatile memory of the present invention of ROM, EEPROM and FLASH or combination of any two is made of one unified, fully compatible, highly-scalable BN+ cell and unified process. In addition, its cell operation schemes have zero array overhead and zero disturbance during P/E operations. The novel combo nonvolatile memory is designed to meet the need in those markets requiring flexible write size in units of bytes, pages and blocks at a lower cost.
摘要:
A nonvolatile memory array has a single transistor flash memory cell and a two transistor EEPROM memory cell which maybe integrated on the same substrate. The nonvolatile memory cell has a floating gate with a low coupling coefficient to permit a smaller memory cell. The floating gate placed over a tunneling insulation layer, the floating gate is aligned with edges of the source region and the drain region and having a width defined by a width of the edges of the source the drain. The floating gate and control gate have a relatively small coupling ratio of less than 50% to allow scaling of the nonvolatile memory cells. The nonvolatile memory cells are programmed with channel hot electron programming and erased with Fowler Nordheim tunneling at relatively high voltages.
摘要:
An on-chip system receives raw positive and negative voltages from voltage pumps and provides CMOS-compatible bandgap-type positive and negative reference voltages from which regulated positive and negative Vpp and Vpn voltages are generated. A bitline (BL) regulator and a sourceline (SL) regulator receive Vpp and generate a plurality of BL voltages and SL voltages, and use feedback to compare potential at selected BL nodes and SL nodes to a reference potential using a multi-stage differential input differential output comparator. Reference voltages used to create BL and SL potentials may be varied automatically as a function of addressed cell locations to compensate for ohmic losses associated with different cell array positions. The system includes positive and negative wordline (WL) regulators that each use feedback from selected WL nodes. The system further includes a WL detector and magnitude detector for Vdd and Vpp, and can accommodate multiple level memory (MLC) cells by slewing reference voltages used to output regulated voltages. The system preferably is fabricated on the same IC chip as the address logic and memory array using the regulated potentials.
摘要:
An on-chip system receives raw positive and negative voltages from voltage pumps and provides CMOS-compatible bandgap-type positive and negative reference voltages from at least one of which regulated positive and negative Vpp and Vpn voltages are generated. A bitline (BL) regulator and a sourceline (SL) regulator receive Vpp and generate a plurality of BL voltages and SL voltages, and use feedback to compare potential at selected BL nodes and SL nodes to a reference potential using a multi-stage differential input differential output comparator. Reference voltages used to create BL and SL potentials may be varied automatically as a function of addressed cell locations to compensate for ohmic losses associated with different cell array positions. The system includes positive and negative wordline (WL) regulators that each use feedback from selected WL nodes. The system further includes a WL detector and magnitude detector for Vdd and Vpp, and can accommodate multiple level memory (MLC) cells by slewing reference voltages used to output regulated voltages. The system preferably is fabricated on the same IC chip as the address logic and memory array using the regulated potentials.
摘要:
A flash memory includes a bank of flash transistors forming a plurality of rows and a plurality of columns, each flash transistor having a gate, drain and source, where the gates of flash transistors in each row are coupled to common wordlines, the drains of flash transistors in each column are coupled to common metal 1 lines divided into even metal 1 lines and odd metal 1 lines and the sources of the flash transistors are coupled to a common sourceline. A set of first selection transistors are coupled between even metal 1 lines and metal 2 lines having a pitch twice that of said metal 1 lines and controlled by a first select signal to selectively couple the even metal 1 lines to the metal 2 lines. A set of second selection transistors are coupled between odd metal 1 lines and the metal 2 lines and controlled by a second select signal to selectively couple the odd metal 1 lines to the metal 2 lines. In one embodiment, the set of first selection transistors and the set of second selection transistors are large in comparison to the flash transistors. Advantages of the invention include improved selection of memory cells, higher memory cell density and lower resistance in the memory cell selection circuitry.
摘要:
A nonvolatile memory device includes multiple independent nonvolatile memory arrays that concurrently for parallel reading and writing the nonvolatile memory arrays. A serial interface communicates commands, address, device status, and data between a master device and nonvolatile memory arrays for concurrently reading and writing of the nonvolatile memory arrays and sub-arrays. Data is transferred on the serial interface at the rising edge and the falling edge of the synchronizing clock. The serial interface transmits a command code and an address code from a master device and transfers a data code between the master device and the nonvolatile memory device, wherein the data code has a length that is determined by the command code and a location determined by the address code. Reading one nonvolatile memory array may be interrupted for reading another. One reading operation has two sub-addresses with one transferred prior to a command.