Abstract:
Approaches for forming a FinFET device using double patterning memorization techniques are provided. Specifically, a device will initially be formed by defining a set of fins, depositing a poly-silicon layer, and depositing a hardmask. Thereafter, a front end of the line (FEOL) lithography-etch, lithography-etch (LELE) process will be performed to form a set of trenches in the device. The set of trenches will be filled with an oxide layer that is subsequently polished. Thereafter, the device is selectively etched to yield a (e.g., poly-silicon) gate pattern.
Abstract:
Lithography stack, intermediate semiconductor devices, and methods of fabrication are provided. The method includes obtaining an intermediate semiconductor device with a substrate, applying a spin on carbon layer over the substrate, and applying a hardmask layer over the spin on carbon layer. The intermediate semiconductor device includes a substrate, a spin on carbon layer over the substrate, and a hardmask layer over the spin on carbon layer. The lithography stack includes a spin on carbon layer, an invisible hardmask layer over the spin on carbon layer, and a photoresist layer over the invisible hardmask layer.
Abstract:
Process of using a dummy gate as an interconnection and a method of manufacturing the same are disclosed. Embodiments include forming on a semiconductor substrate dummy gate structures at cell boundaries, each dummy gate structure including a set of sidewall spacers and a cap disposed between the sidewall spacers; removing a first sidewall spacer or at least a portion of a first cap on a first side of a first dummy gate structure and forming a first gate contact trench over the first dummy gate structure; and filling the first gate contact trench with a metal to form a first gate contact.
Abstract:
Semiconductor devices and methods of fabricating the semiconductor devices with chamfer-less via multi-patterning are disclosed. One method includes, for instance: obtaining an intermediate semiconductor device; performing a trench etch into a portion of the intermediate semiconductor device to form a trench pattern; depositing an etching stack; performing at least one via patterning process; and forming at least one via opening into a portion of the intermediate semiconductor device. An intermediate semiconductor device is also disclosed.
Abstract:
Process of using a dummy gate as an interconnection and a method of manufacturing the same are disclosed. Embodiments include forming on a semiconductor substrate dummy gate structures at cell boundaries, each dummy gate structure including a set of sidewall spacers and a cap disposed between the sidewall spacers; removing a first sidewall spacer or at least a portion of a first cap on a first side of a first dummy gate structure and forming a first gate contact trench over the first dummy gate structure; and filling the first gate contact trench with a metal to form a first gate contact.