Abstract:
A watercraft includes a hull structure, a deck structure, and a propulsion system. The hull structure includes at least one hull each defining an interior. The deck structure is mounted to the hull structure. The propulsion system is adapted for moving the watercraft within a body of water, and includes an electric motor and an energy storage device coupled to the electric motor. The electric motor and the energy storage device are positioned adjacent one another within an area including at least one of the interior of the at least one hull.
Abstract:
A transmission having a rotating clutch pack assembly is provided, The rotating clutch pack having an interconnecting member, a plurality of friction discs, a rotating member, a first and a second axial bearing, and a biasing member. The interconnecting member is connected for common rotation with a member of the planetary gear set. The rotating member is connected to the second set of friction discs for common rotation. The first axial bearing is disposed between the clutch piston and the plurality of friction discs and the second axial bearing is disposed between the plurality of friction discs and the transmission housing. The biasing member is disposed between the interconnecting member and the rotating member. A clutch piston selectively applies an axial force through the first axial bearing, the plurality of friction discs, and the second axial bearing to the transmission housing.
Abstract:
A transmission for a vehicle and a method of assembling a modular motor assembly in the transmission are disclosed. The transmission includes a housing defining a cavity along a longitudinal axis. The transmission further includes a first motor/generator and a second motor/generator each disposed in the cavity. The transmission also includes a first support supporting the first motor/generator such that the first motor/generator is mounted to the first support to define a first modular unit. The first modular unit is attached to the housing within the cavity. The transmission further includes a second support supporting the second motor/generator such that the second motor/generator is mounted to the second support to define a second modular unit. The second modular unit is attached to the first modular unit such that the first and second modular units align with each other along the longitudinal axis within the cavity of the housing.
Abstract:
A transmission comprising housing and an axially compliant hub having a central plate with an axial opening and an outer circumference. The central plate is attached to the attached to the circumference with at least one strap spring. A method of managing axial stack up in a transmission is also disclosed where the transmission has a plurality of planetary gear sets aligned in series and at least one torque transmitting device. The planetary gear has gear members. The method includes providing a an axially compliant hub having a central plate with an axial opening and an outer circumference, wherein the central plate is attached to the attached to the circumference with at least one strap spring and wherein the outer circumference is connected to the torque transmitting device and wherein the central plate is connected to a gear member of a planetary gear set.
Abstract:
A transmission for a vehicle is disclosed. The transmission includes a casing defining a first cavity and a second cavity inside the casing, with the first cavity selectively open to outside of the casing. The transmission also includes a platform at least partially disposed inside the casing to separate the first and second cavities. Furthermore, the transmission includes a power inverter module selectively disposed in the first cavity. The power inverter module includes a cooling system for cooling the power inverter module. The transmission also includes a guide attached to the platform and the casing within the second cavity such that the guide provides fluid communication between the cooling system of the power inverter module within the first cavity and outside of the casing while bypassing the second cavity.
Abstract:
An electrically-variable transmission for a vehicle is disclosed. The transmission includes an input member and an output member each rotatable about a first axis. The transmission includes a casing defining a cavity between a first end wall and a second end wall. The transmission includes a first motor/generator and a second motor/generator disposed in the cavity with a second planetary gear set disposed between the first and second motor/generators along the first axis. The transmission includes a first torque-transmitting mechanism disposed between the first and second motor/generators along the first axis. The transmission includes a second torque-transmitting mechanism disposed between the first end wall and the first motor/generator along the first axis. The first motor/generator is disposed between the first and second torque-transmitting mechanisms along the first axis. The transmission includes a damper mechanism disposed between the second end wall and a first planetary gear set along the first axis.
Abstract:
A transmission for a vehicle and a method of assembling a modular motor assembly in the transmission are disclosed. The transmission includes a housing defining a cavity along a longitudinal axis. The transmission further includes a first motor/generator and a second motor/generator each disposed in the cavity. The transmission also includes a first support supporting the first motor/generator such that the first motor/generator is mounted to the first support to define a first modular unit. The first modular unit is attached to the housing within the cavity. The transmission further includes a second support supporting the second motor/generator such that the second motor/generator is mounted to the second support to define a second modular unit. The second modular unit is attached to the first modular unit such that the first and second modular units align with each other along the longitudinal axis within the cavity of the housing.
Abstract:
An electric drive unit for powering a load, e.g., road wheels of a motor vehicle, includes a housing having a floor section separating the housing into upper and lower chambers. The floor section defines an elongated drain opening, drain holes, and an oil supply port in fluid communication with an oil pump. A rotary electric machine is enclosed within the lower chamber, and has electrical leads positioned directly below the drain opening. A cover assembly is fastened to the housing within the upper chamber, and has a coolant channel assembly integrally connected to a cover plate. The coolant channel assembly includes electrical terminals that project through the drain opening and are fastened at a first distal end of the electrical terminals to the electrical leads. The cover assembly defines a primary coolant channel in fluid communication with the oil supply port, and directs oil to the electrical terminals.
Abstract:
An electric motor for a hybrid or electric vehicle drive unit includes a housing with a stator fixed within the housing and including a plurality of end windings. A rotor is disposed within the housing and connected to a drive shaft. An isolating ring is disposed within the housing between the end windings and the housing.
Abstract:
A transmission for a vehicle is disclosed. The transmission includes a casing defining a first cavity and a second cavity inside the casing, with the first cavity selectively open to outside of the casing. The transmission also includes a platform at least partially disposed inside the casing to separate the first and second cavities. Furthermore, the transmission includes a power inverter module selectively disposed in the first cavity. The power inverter module includes a cooling system for cooling the power inverter module. The transmission also includes a guide attached to the platform and the casing within the second cavity such that the guide provides fluid communication between the cooling system of the power inverter module within the first cavity and outside of the casing while bypassing the second cavity.