Abstract:
A method of laser welding a workpiece stack-up (10) that includes at least two overlapping aluminum workpieces (12, 14) comprises advancing a laser beam (24) relative to a plane of a top surface (20) of the workpiece stack-up (10) and along a spot weld travel pattern (74) that includes one or more nonlinear inner weld paths and an outer peripheral weld path that surrounds the one or more nonlinear inner weld paths. Such advancement of the laser beam (24) along the spot weld travel pattern (74) translates a keyhole (78) and a surrounding molten aluminum weld pool (76) along a corresponding route relative to the top surface (20) of the workpiece stack-up (10). Advancing the laser beam (24) along the spot weld travel pattern (74) forms a weld joint (72), which includes resolidified composite aluminum workpiece material derived from each of the aluminum workpieces (12, 14) penetrated by the surrounding molten aluminum weld pool (76), that fusion welds the aluminum workpieces (12, 14) together.
Abstract:
A method of laser welding a workpiece stack-up (10) that includes at least two overlapping steel workpieces (12, 14) comprises directing a laser beam (40) at a top surface (26) of the workpiece stack-up to form a keyhole (56) surrounded by a molten steel weld pool (58). The laser beam is conveyed along a predefined weld pattern that includes one or more nonlinear inner weld paths (66) and an enclosed outer peripheral weld path (68) surrounding the one or more nonlinear inner weld paths. During conveyance of the laser beam along the one or more nonlinear inner weld paths, the keyhole fully penetrates through the workpiece stack-up from the top surface of the stack-up to the bottom surface (28) of the stack-up. The method produces weld joints between the steel workpieces that do not have an intentionally imposed gap formed between their faying surfaces.
Abstract:
A method of laser welding a workpiece stack-up includes directing a laser beam at a top surface of a first metal workpiece to form a key-hole that entirely penetrates the workpiece stack-up, including an underlying second metal workpiece, so that the keyhole reaches a bottom surface of the second metal workpiece. A zone of negative pressure established under the bottom surface of the second metal workpiece extracts vapors that are produced by the laser beam. The vapors, in particular, are extracted from the bottom surface of the second metal workpiece through the keyhole. A bottom workpiece holder that supports the bottom metal workpiece during laser welding may be constructed to establish the zone of negative pressure.
Abstract:
A trip plan is received at an in-vehicle application on a memory of an in-vehicle infotainment unit or at an application on a mobile device memory. The trip plan includes an expected trip duration and/or an expected trip return. An in-vehicle bus facilitates monitoring for a return event, or a mobile device monitoring system facilitates monitoring for a return event. In an example, a notification that the return event has been recognized is received at one of the applications. The return event is identified as having occurred prior to or at the expiration of the expected trip duration and/or return. In another example, one of the applications recognizes that the expected trip duration and/or the return has expired and that no notification of the return event has been received, and a pending alert notification is transmitted to another party.
Abstract:
A trip plan is received at an in-vehicle application on a memory of an in-vehicle infotainment unit or at an application on a mobile device memory. The trip plan includes an expected trip duration and/or an expected trip return. An in-vehicle bus facilitates monitoring for a return event, or a mobile device monitoring system facilitates monitoring for a return event. In an example, a notification that the return event has been recognized is received at one of the applications. The return event is identified as having occurred prior to or at the expiration of the expected trip duration and/or return. In another example, one of the applications recognizes that the expected trip duration and/or the return has expired and that no notification of the return event has been received, and a pending alert notification is transmitted to another party.
Abstract:
A method of attaching a thermoplastic-based workpiece and a metal workpiece involves the use of a metal reaction coating. The metal reaction coating is applied over a base metal substrate of the metal workpiece such that the metal reaction coating faces and contacts the thermoplastic-based workpiece when the two workpieces are assembled in overlapping fashion. To attach the workpieces at their faying interface, an energy source such as, for example, a laser beam or an electric arc, is directed against the metal workpiece to create a zone of concentrated heat that at least warms up the metal reaction coating and melts a portion of the thermoplastic-based workpiece. Such heated activity at the faying interface promotes interfacial chemical bonding between the thermoplastic-based workpiece and the metal workpiece that contributes to an enhanced attachment between the workpieces.
Abstract:
Disclosed are self-adjusting wires, methods of making these self-adjusting wires, and thermal joining processes (such as gas metal arc welding or laser brazing) and other processes using these self-adjusting wires. The wires have a core of a metal or metal alloy suitable as a joining material in the joining process and an exterior layer of a shape-memory alloy, which may be continuous about the exterior of the core or discontinuous such as a longitudinal strip or strips. The shape-memory alloy of the self-adjusting wire is “trained” to a straight-wire shape in its austenite phase. In using the self-adjusting wire in a process, a bent end of the self-adjusting wire is straightened by heating the self-adjusting wire above the austenite phase transition temperature of the shape-memory alloy.
Abstract:
Methods and apparatus are provided for controlling an air quality within a passenger cabin. The method includes outputting one or more control signals, by a processor, to activate a motor to generate an airflow stream for observation by a fine particulate matter sensor, the fine particulate matter sensor generating sensor signals based on the observation; determining a concentration level of fine particulate matter in the airflow based on the sensor signals; and outputting one or more control signals to an air quality system associated with the passenger cabin to generate an airflow into the passenger cabin based on the determined concentration level, the airflow into the passenger cabin flowing through a fine particulate matter filter.
Abstract:
A joint member (100) includes a metal component (12) and a composite component (14) which are joined by a joint (10) formed at a non-planar joint interface (18) defined by a textured surface portion (28) of the metal component (12) and a solidified melted area (24) of the composite component (14). The solidified melted area (24) adjacent to the joint interface (18) is characterized by a plurality of non-contiguous solidification boundaries (22) and a non-contiguous dispersion of porosity (16). A method includes forming a textured surface portion (28) on the metal component (12), pressing the textured surface portion (28) into the surface of the composite component (14) to form depressions (32) in the composite component (14), such that a joint interface (18) is defined by the surfaces of the textured surface portion (28) and the composite depressions (32), heating the joint interface (18) to melt an area of the composite component (14) adjacent to the joint interface (18), and solidifying the melted area (24) to the form a joint (10) at the joint interface (18).
Abstract:
A method of laser welding a workpiece stack-up (10) that includes at least two overlapping steel workpieces (12, 14) comprises directing a laser beam (40) at a top surface (26) of the workpiece stack-up to form a keyhole (56) surrounded by a molten steel weld pool (58). The laser beam is conveyed along a predefined weld pattern that includes one or more nonlinear inner weld paths (66) and an enclosed outer peripheral weld path (68) surrounding the one or more nonlinear inner weld paths. During conveyance of the laser beam along the one or more nonlinear inner weld paths, the keyhole fully penetrates through the workpiece stack-up from the top surface of the stack-up to the bottom surface (28) of the stack-up. The method produces weld joints between the steel workpieces that do not have an intentionally imposed gap formed between their faying surfaces.