摘要:
Opal glass compositions and devices incorporating opal glass compositions are described herein. The compositions solve problems associated with the use of opal glasses as light-scattering layers in electroluminescent devices, such as organic light-emitting diodes. In particular, embodiments solve the problem of high light absorption within the opal glass layer as well as the problem of an insufficiently high refractive index that results in poor light collection by the layer. Particular devices comprise light-emitting diodes incorporating light scattering layers formed of high-index opal glasses of high light scattering power that exhibit minimal light attenuation through light absorption within the matrix phases of the glasses.
摘要:
Opal glass compositions and devices incorporating opal glass compositions are described herein. The compositions solve problems associated with the use of opal glasses as light-scattering layers in electroluminescent devices, such as organic light-emitting diodes. In particular, embodiments solve the problem of high light absorption within the opal glass layer as well as the problem of an insufficiently high refractive index that results in poor light collection by the layer. Particular devices comprise light-emitting diodes incorporating light scattering layers formed of high-index opal glasses of high light scattering power that exhibit minimal light attenuation through light absorption within the matrix phases of the glasses.
摘要:
Light scattering inorganic substrates comprising monolayers and methods for making light scattering inorganic substrates comprising monolayers useful for, for example, photovoltaic cells are described herein. One embodiment is a method for making a light scattering inorganic substrate. The method comprises providing an inorganic substrate comprising at least one surface, forming a monolayer of inorganic particles on the at least one surface to form a coated substrate, heating the coated substrate above the softening point of the inorganic substrate, and pressing the inorganic particles into the at least one surface form the light scattering inorganic substrate.
摘要:
Light scattering substrates, superstrates, and/or layers for photovoltaic cells are described herein. Such structures can be used for volumetric scattering in thin film photovoltaic cells.
摘要:
In accordance with the invention, a continuously chirped fiber Bragg grating is made by fabricating a continuously chirped phase mask and using the mask to write a Bragg grating on a parallel fiber. The chirped phase mask is made by exposing a photoresist-coated mask substrate to two interfering beams: one a collimated beam and the other a beam reflected from a continuously curved mirror. After etching, the resulting phase mask can be used to write a chirped fiber grating having a continuously varying grating period without physical modification of the fiber. The resulting fiber grating has a widened bandwidth and uniform dispersive delay characteristics useful for dispersion compensation in critical telecommunications applications.
摘要:
Light scattering inorganic substrates comprising monolayers and methods for making light scattering inorganic substrates comprising monolayers useful for, for example, photovoltaic cells are described herein. The method comprises providing an inorganic substrate comprising at least one surface, applying an adhesive to the at least one surface of the inorganic substrate, applying inorganic particles to the adhesive to form a coated substrate, and heating the coated substrate to form the light scattering inorganic substrate.
摘要:
Light scattering substrates made by providing a substrate comprising at least one surface, forming a layer of particles by depositing a sol-gel on the at least one surface, and heating the coated substrate.
摘要:
Methods of isolating photovoltaic cells in a module by providing a textured glass substrate with a pattern of textured areas and a pattern of non-textured areas; forming a plurality of photovoltaic cells on the glass substrate; and isolating each of the cells from each adjacent cell to form the module. Glass substrates have a surface with a pattern of textured areas; and a pattern of non-textured areas, wherein the non-textured areas are in the form of strips having an average width of from 10 microns to 500 microns. Articles have a glass substrate having a surface comprising a pattern of textured areas and a pattern of non-textured areas; and a plurality of isolated photovoltaic cells formed on the glass substrate.
摘要:
Methods and apparatus for producing a CMOS image sensor result in: a glass or glass ceramic substrate having first and second spaced-apart surfaces; a semiconductor layer disposed on the first surface of the glass or glass ceramic substrate; and a plurality of pixel structures formed in the semiconductor layer, each pixel structure including: at least first, second, and third semiconductor islands, each island operating as a color sensitive photo-detector and each being of a different thickness such that each is sensitive to a respective range of light wavelengths, and a fourth semiconductor island on which at least one transistor is disposed, the at least one transistor operating to at least one of buffer, select, and reset one or more of the photo-detectors.
摘要:
Light scattering inorganic substrates and articles comprising soot particles and methods for making light scattering inorganic substrates and articles comprising soot particles useful for, for example, photovoltaic cells. The method for making the substrates and articles comprises providing an inorganic substrate comprising at least one surface, applying soot particles pyrogenically to the at least one surface of the inorganic substrate to form a coated substrate, and heating the soot particles to form the light scattering inorganic substrate. The invention creates a scattering glass surface that is suitable for subsequent deposition of a TCO and a thin film silicon photovoltaic device structure. The scattering properties may be controlled by the combination of substrate glass and soot composition, deposition conditions, patterning of the soot, and/or sintering conditions.