摘要:
A laser annealer has a laser light source with at least one GaN-type semiconductor laser and is configured so as to form emission points that emit laser beams having a wavelength of 350 to 450 nm, and a scanning device for scanning an annealing surface with the laser beams. The laser annealer may have a spatial light modulator for modulating the laser beams, and in which pixel portions whose light modulating states change in accordance with control signals are arranged on a substrate. The invention is applied to a laser thin-film forming apparatus. The apparatus has a laser source that has at least one semiconductor laser and is configured so as to form emission points, and an optical system for focusing laser beams into a single beam in the width direction of a substrate.
摘要:
A method of production of an ultra-thin semiconductor chip and an ultra-thin back-illuminated solid-state image pickup device utilizing a semiconductor layer formed on a support substrate via an insulating layer to improve separation performance of a semiconductor layer from a support substrate and thereby improve the productivity and quality-including the steps of forming a base comprised of a support substrate on which a porous layer or other peeling layer, a second semiconductor layer, an insulating layer, and a first semiconductor layer are stacked; forming solid-state image pickup sensor units and projecting connection electrodes to be connected to the solid-state image pickup sensor units in the first semiconductor layer; forming scores reaching the peeling layer along separation lines for separation into individual solid-state image pickup devices; forming a resin protective film filling the scores, covering the first semiconductor layer, and exposing the connection electrodes; peeling off the support substrate via the peeling layer as an interface; and cutting from the second semiconductor layer side along the resin protective film filled in the scores to separate individual solid-state image pickup devices.
摘要:
A method of producing a microlens array includes a patterning step of forming a first optical resin layer having a first refractive index on a transparent substrate and forming a plurality of microlens planes arrayed in a two-dimensional pattern on the front surface of the first optical resin layer; a planarizing step of forming a planarized second optical resin layer; a joining step of providing a support layer on which a transparent protective film is previously formed; and a removing step of removing the support layer in such a manner that only the protective film remains on the second optical resin layer. The planarizing step is performed by filling irregularities of the microlens planes with a resin having a second refractive index and planarizing the front surface, opposed to the microlens planes, of the resin, to form the planarized second optical resin layer, and the joining step is performed by joining the support layer to the planarized second optical resin layer. With this method, a microlens array excellent in surface accuracy and flatness can be produced without the need of provision of a support layer made from glass.
摘要:
A method for producing an ultra-thin semiconductor chip and an ultra-thin back-illuminated solid-state image pickup device utilizing a semiconductor layer formed on a support substrate via an insulating layer to improve separation performance of a semiconductor layer from a support substrate and thereby improve the productivity and quality. The method uses two porous peeling layers on opposite sides of a substrate to produce an ultra-thin substrate.
摘要:
A single crystal silicon is graphoepitaxially grown using a step formed on a substrate as a seed by a catalyst process, and the obtained single crystal silicon layer is used for a dual gate type MOSTFT in an electro-optical apparatus such as a display section of a peripheral driving circuit integration type LCD. A single crystal silicon thin film having high electron/hole mobility is formed into a uniform film at a relatively low temperature, which enables the manufacturing of an active matrix substrate incorporated with a high-performance driver which can be used in a TFT display.
摘要:
A single-crystal silicon layer is formed by graphoepitaxy from a low-melting-point metal layer which contains dissolved polycrystalline or amorphous silicon, or from a melt of a silicon-containing low-melting-point metal, using step differences formed on a substrate as a seed for the epitaxial growth. This single-crystal silicon layer is used as dual-gate MOSTFTS, or bottom-gate MOSTFTS, of an electrooptical device such as an LCD integrating a display section and a peripheral-driving-circuit section. This process enables production of a uniform single-crystal silicon thin-film having high electron/hole mobility at a relatively low temperature. The display section includes LDD-nMOSTFTs or pMOSTFTs having high switching characteristics and a low leakage current. The peripheral-driving-circuit section includes cMOSTFTs, nMOSTFTs, pMOSTFTs, or a combination thereof, having high driving ability.
摘要:
An electro-optic device, such as an LCD, includes a display unit and a peripheral drive circuit unit on a single substrate. A gate comprising a gate electrode and gate insulation film is formed on a surface of the substrate. A layer of a substance having good lattice compatibility with monocrystalline silicon is formed over the gate insulation film. A layer of monocrystalline silicon is formed over the substance layer. Monocrystalline silicon is heteroepitaxially grown by catalytic CVD or the like using a crystalline sapphire film formed on the substrate to form the monocrystalline silicon layer. The monocrystalline silicon layer is used as a dual gate MOSTFT of the electro-optic device.
摘要:
A liquid crystal display for a projector, including a pair of substrates, a liquid crystal sealed in a space defined between the pair of substrates, and a translucent radiating plate mounted on at least one of the pair of substrates through a translucent adhesive. With this configuration, heat generated in the liquid crystal display can be efficiently dissipated to the outside with a simple structure. Further, degradation of a displayed image quality due to variations in cell gap can be prevented.
摘要:
According to the present invention, a method of manufacturing members, with a plurality of members being formed together on a single substrate and the substrate being cut in such a manner as to be divided into individual members after a characteristic evaluation of the members is carried out, comprises the steps of, carrying out the evaluation of the characteristics and applying ink marks of a prescribed height to surfaces of members deemed to have been defective, affixing a protective tape having an adhesive layer of a thickness equal to or greater than the height of the ink marks, to the surface of the substrate and cutting the substrate in such a manner as to be divided into individual members after a lower surface of the substrate has been ground or polished.
摘要:
A deflection current from a vertical deflection output circuit is supplied to a series circuit of a vertical deflection coil and a capacitor. A pair of transistors are coupled to a DC voltage source in a complementary arrangement. The bases of these transistors are coupled to a slidable end of a variable resistor coupled to the DC voltage source, respectively through constant voltage elements, which are coupled to each other in the opposite directions. The node of these two transistors is coupled to the node of the deflection coil and the capacitor. As the position of the slidable end of the variable resistor is moved away from the center, one transistor of the pair becomes conductive. With this arrangement, a deflection current free of ripple components can be supplied to the deflection coil in order to adjust the vertical position of an image on the screen of a CRT.