Abstract:
An FPC board, electrode films and a fuel accommodating chamber are accommodated in a casing. In the FPC board, a plurality of collector portions are joined onto a base insulating layer with an adhesive pattern sandwiched therebetween. The base insulating layer is made of porous ePTFE, and is air-permeable. Openings are formed in the collector portions. The adhesive pattern has the same shape as the plurality of collector portions. The FPC board is sandwiched by an upper surface portion and a lower surface portion of the casing while being bent along a bend portion. The electrode films are arranged between the plurality of collector portions of the FPC board. The fuel accommodating chamber is provided between the FPC board and the lower surface portion so as to come in contact with the base insulating layer. A liquid fuel is supplied to the fuel accommodating chamber.
Abstract:
A resist film is formed on a conductor layer of a two-layered base material composed of a carrier layer and the conductor layer. Next, the resist film is exposed and developed, so that an etching resist pattern is formed. A region of the conductor layer that is exposed while not covered with the etching resist pattern is removed by etching. A conductor pattern is formed by removing the etching resist pattern. Then, an adhesive layer precursor is applied on an entire surface including an upper surface of the conductor pattern. The adhesive layer precursor is exposed and developed, so that an adhesive pattern is formed on the conductor pattern. After that, a base insulating layer is joined onto the conductor pattern with the adhesive pattern sandwiched therebetween. Finally, a carrier layer is separated from the conductor pattern, so that the FPC board is manufactured.
Abstract:
Collector portions, connection conductor portions and drawn-out conductor portions are formed on one surface of a base insulting layer of an FPC board. The collector portions, the connection conductor portions and the drawn-out conductor portions are covered with cover layers. The cover layers contain a resin composition. The resin composition has moisture permeability of not more than 150 g/(m2·24 h) in an environment at a temperature of 40° C. and with a relative humidity of 90%. The resin composition has a glass transition temperature of not less than 80° C.
Abstract:
A conductor layer is formed on one surface of a base insulating layer. The conductor layer is composed of a pair of rectangular collector portions and drawn-out conductor portions extending in long-sized shapes from the collector portions, respectively. Cover layers are formed on the base insulating layer to cover respective given portions of the conductor layer. A paste composition containing a compound represented by the formula (1) is used as a material for the cover layer.
Abstract:
A plurality of conductor traces are formed on a porous base insulating layer made of porous ePTFE. Each conductor trace has a laminated structure of a seed layer and a conductor layer. A cover insulating layer is formed on the base insulating layer to cover each conductor trace. The ePTFE used as the porous base insulating layer has continuous pores. An average pore size of the ePTFE is not less than 0.05 μm and not more than 1.0 μm.
Abstract:
A printed circuit board includes a base insulating layer formed of a porous film. Conductor traces are formed on the base insulating layer formed of the porous film. A cover insulating layer is formed on the base insulating layer to cover the conductor traces. The porous film used as the base insulating layer has a reflectivity of not less than 50% for light of at least a part of wavelengths in a wavelength region from 400 nm to 800 nm.
Abstract:
An FPC board includes a base insulating layer. The base insulating layer is composed of a first insulating portion and a second insulating portion. A bend portion is provided in the first insulating portion. A conductor layer is formed on one surface of the base insulating layer. The conductor layer is composed of a collector portion and a drawn-out conductor portion. A cover layer is formed to cover the conductor layer. A liquid crystal polymer is used as a material for the base insulating layer.
Abstract:
A pressure-sensitive adhesive optical film of the present invention comprises: an optical film comprising a transparent base film and a discotic liquid crystal layer on one side of the transparent base film; and a pressure-sensitive adhesive layer that is provided on the discotic liquid crystal layer, wherein the pressure-sensitive adhesive layer is made from a pressure-sensitive adhesive containing an acrylic polymer comprising an alkyl(meth)acrylate (a1) and a ring structure-containing (meth)acrylate (a2) as monomer units and having a weight average molecular weight of 1,000,000 to 3,000,000, and a crosslinking agent. The pressure-sensitive adhesive optical film has durability and can be prevented from causing display unevenness in a peripheral portion of a display screen.
Abstract:
A conductor layer having a predetermined pattern is formed on a base insulating layer so that its second main surface opposes the base insulating layer. A barrier layer having higher corrosion resistance to acids than that of the conductor layer is formed on its first main surface and a side surface of the conductor layer while the first main surface and the side surface of the conductor layer and the barrier layer are covered with a conductive cover layer.
Abstract:
A pressure-sensitive adhesive for an optical film of the present invention comprises a (meth)acrylic polymer comprising 50 to 99.99% by weight of alkyl (meth)acrylate monomer unit and 0.01 to 30% by weight of a photocrosslinkable monomer unit having an unsaturated double bond-containing polymerizable functional group and a photocrosslinkable moiety different from the functional group. A pressure-sensitive adhesive layer is formed from the pressure-sensitive adhesive on at least one side of an optical film, wherein the photocrosslinkable moiety of the (meth)acrylic polymer in the pressure-sensitive adhesive is crosslinked by active energy ray irradiation. The pressure-sensitive adhesive can form the pressure-sensitive adhesive layer with a high level of durability and preferable workability.