摘要:
A thin-film transistor (3, 5a, 5b and 5c) is covered with a first silicon nitride film (9) formed by an LPCVD method. A first silicon oxide film (6) is formed on the first silicon nitride film (9). A silicon nitride film (7), i.e., passivation film which is formed by a plasma CVD method is provided on the first silicon oxide film (6).
摘要:
A thin-film transistor (3, 5a, 5b and 5c) is covered with a first silicon nitride film (9) formed by an LPCVD method. A first silicon oxide film (6) is formed on the first silicon nitride film (9). A second silicon nitride film (7), i.e., passivation film which is formed by a plasma CVD method is provided on the first silicon oxide film (6). In addition, the thin-film transistor includes a semiconductor layer covering a gate electrode. The semiconductor layer includes source, drain and active regions. The active region preferably includes a smaller amount of fluorine than the gate electrode.
摘要:
A thin-film transistor (3, 5a, 5b and 5c) is covered with a first silicon nitride film (9) formed by an LPCVD method. A first silicon oxide film (6) is formed on the first silicon nitride film (9). A silicon nitride film (7), i.e., passivation film which is formed by a plasma CVD method is provided on the first silicon oxide film (6).
摘要:
There is provided a semiconductor device which is formed on a semiconductor substrate and allows effective use of the feature of the semiconductor substrate, and there is also provided a method of manufacturing the same. An N-channel MOS transistor including a P-type body layer (3a), and a P-type active layer (6) for body voltage application which is in contact with the P-type body layer (3a) are formed on an SOI substrate which is formed to align a crystal direction of a support substrate (1) with a crystal direction of an SOI layer (3). A path connecting the P-type body layer (3a) and the P-type active layer (6) for body voltage application is aligned parallel to the crystal direction of the SOI layer (3). Since hole mobility is higher in the crystal direction, parasitic resistance (Ra, Rb) can be reduced in the above path. This speeds up voltage transmission to the P-type body layer (3a) and improves voltage fixing capability in the P-type body layer (3a).
摘要:
A semiconductor device includes a plurality of circuit portions of different functions each constructed by including a MOS transistor on an SOI substrate obtained by sequentially stacking a semiconductor substrate, a buried insulating film and a semiconductor layer. The semiconductor device includes first and second portions. The first circuit portion is isolated by being surrounded with a first insulating film provided on an upper portion of the semiconductor layer and a second insulating film penetrating the semiconductor layer to reach the buried insulating film.
摘要:
An isolation insulating film (5) of partial-trench type is selectively formed in an upper surface of a silicon layer (4). A power supply line (21) is formed above the isolation insulating film (5). Below the power supply line (21), a complete isolation portion (23) reaching an upper surface of an insulating film (3) is formed in the isolation insulating film (5). In other words, a semiconductor device comprises a complete-isolation insulating film which is so formed as to extend from the upper surface of the silicon layer (4) and reach the upper surface of insulating film (3) below the power supply line (21). With this structure, it is possible to obtain the semiconductor device capable of suppressing variation in potential of a body region caused by variation in potential of the power supply line.
摘要:
Provided are a thin-film transistor formed by connecting polysilicon layers having different conductivity types with each other which prevents occurrence of inconvenience resulting from diffusion of impurities and a method of fabricating the same. A drain (6), a channel (7) and a source (8) are integrally formed on a surface of a second oxide film (4) by polysilicon. The drain (6) is formed to be connected with a pad layer (3) (second polycrystalline semiconductor layer) through a contact hole (5) which is formed to reach an upper surface of the pad layer (3). The pad layer (3) positioned on a bottom portion of the contact hole (5) (opening) is provided with a boron implantation region BR.
摘要:
A partial oxide film (31) with well regions formed therebeneath isolates transistor formation regions in an SOI layer (3) from each other. A p-type well region (11) is formed beneath part of the partial oxide film (31) which isolates NMOS transistors from each other, and an n-type well region (12) is formed beneath part of the partial oxide film (31) which isolates PMOS transistors from each other. The p-type well region (11) and the n-type well region (12) are formed in side-by-side relation beneath part of the partial oxide film (31) which provides isolation between the NMOS and PMOS transistors. A body region is in contact with the well region (11) adjacent thereto. An interconnect layer formed on an interlayer insulation film (4) is electrically connected to the body region through a body contact provided in the interlayer insulation film (4). A semiconductor device having an SOI structure reduces a floating-substrate effect.
摘要:
A semiconductor device for CSP mounting which avoids errors due to alpha rays and is highly stress-resistant is provided. A buried oxide film (107) is formed on a semiconductor substrate (101), and a MOS transistor having an SOI structure is formed on the buried oxide film (107). The MOS transistor comprises source and drain regions (120a, 120b) formed in a semiconductor layer (120), and a gate electrode (110). An aluminum pad (103) connected to any one of the source and drain regions (120a, 120b) through a connecting mechanism not shown, and a silicon nitride film (104) having an opening on the top of the aluminum pad (103) are formed on an interlayer insulation film (108). A layer of titanium (105) and a layer of nickel (106) are formed extending from the aluminum pad (103) to an end of the silicon nitride film (104). A solder bump (11) is disposed on the layer of nickel (106).
摘要:
An SOI layer is formed so thick that a body region is not fully depleted under conditions of floating and a zero potential. When a MOSFET operates, a negative body potential is applied to the body region through a body electrode. Thus, the body region is fully depleted. The MOSFET is formed equivalently to a conventional MOSFET of a PD mode as to the thickness of the SOI layer, and is equivalent to a MOSFET of an FD mode as to its operation. Therefore, both of advantages of a PD mode MOSFET such as low resistance in source/drain regions, easiness in formation of a contact hole for a main electrode and stability of a silicide layer and an advantage of an FD mode MOSFET such as excellent switching characteristics are compatibly implemented.