Abstract:
A semiconductor integrated circuit apparatus 23 is used for obtaining an optimum solution using an Ising model, and the semiconductor integrated circuit apparatus 23 includes plural spin cells 1 that are connected with each other. Here, each spin cell 1 includes: a memory cell 9(N) for memorizing a spin value; a computing circuit 10 for computing interactions among the plural spin cells that are connected with each other; a memory circuit 4 for holding at least one-bit data; and an inversion logic circuit LG capable of modifying a computed result obtained by the computing circuit in accordance with data held by the memory circuit 4. The computed result modified by a modification circuit in accordance with the data held by the memory circuit is memorized in the memory cell 9(N) included in each spin cell 1.
Abstract:
A spin unit provided with a memory cell that stores a value of one spin of an Ising model, a memory cell that stores an interaction coefficient from an adjacent spin which interacts with the corresponding spin, a memory cell that stores an external magnetic field coefficient of the one spin and circuits that determine the next state of the one spin on the basis of a product of a value of each adjacent spin and the corresponding interaction coefficient and the external magnetic field coefficient is configured, the semiconductor device is provided with a spin array where the plural spin units are arranged and connected on a two-dimensional plane on a semiconductor substrate, a random number generator and a bit regulator, the bit regulator operates output of the random number generator and supplies a random bit to all spin units in the spin array via one wire.
Abstract:
An object of the present invention is to realize an example of configuration that approximately represents a state of quantum spin in a semiconductor device where components as a basic configuration unit are arrayed so as to search a ground state of Ising model. There is disclosed a semiconductor device provided with plural units each of which is equipped with a first memory cell that stores a value which represents one spin of the Ising model by three or more states, a second memory cell that stores an interaction coefficient showing interaction from another spin which exerts interaction on the one spin and a logical circuit that determines the next state of the one spin on the basis of a function having a value which represents a state of the other spin and the interaction coefficient as a constant or a variable.
Abstract:
A quantum computer system includes: a virtual quantum computer that simulates an operation of an actual quantum computer that executes a quantum operation using a quantum bit group based on a predetermined parameter; and a control device that controls the actual quantum computer and the virtual quantum computer, wherein the virtual quantum computer includes an estimation unit that estimates a state of a target quantum bit in the quantum bit group by simulating the operation of the actual quantum computer, and the control device includes a feedback control unit that changes the parameter and transmits the changed parameter to the virtual quantum computer until a deviation between an estimation state of the target quantum bit by the estimation unit and a quantum operation result from the actual quantum computer becomes a first design value or less.
Abstract:
An aspect of the present invention for solving the above problem is a system including a first computer, a control module controlled by the first computer, and a second computer configured to be associated with the control module. The second computer includes a plurality of units, and each of the plurality of units includes a first memory that stores a value indicating a state of a node, a second memory that stores a coefficient, and an arithmetic circuit. The arithmetic circuit performs an arithmetic process of determining a value indicating a state of a node of its own unit, based on a value indicating a state of a node of a different unit and the coefficient of its own unit, and storing the determined value in the first memory. The control module supplies a control signal for controlling the arithmetic process to the second computer.
Abstract:
A semiconductor device includes a spin array in which a plurality of memory cells are disposed in a matrix configuration, a group of a predetermined number of memory cells is collected in units of spin units, and a plurality of the spin units are disposed with an adjacency; a word line provided in correspondence with rows of the memory cells; a bit line pair provided in correspondence with columns of the memory cells; a multiword decoder configured to multiplex a word address according to an input of a multiplicity specify signal to a word line and simultaneously activate a plurality of word lines; and a bit line driver configured to subject a plurality of memory cells, of the memory cells connected to bit line pairs and arrayed in a column direction, activated by the plurality of the word lines to a write operation or a read operation.
Abstract:
A semiconductor device in which components each serving as a basic constitutional unit are arranged in order to find a solution of an interaction model. The semiconductor device includes multiple units each of which has: a first memory cell for scoring a value indicating a state of one node of the interaction model; a second memory cell for storing an interaction coefficient indicating an interaction from another node connected to the one node; a third memory cell for storing a flag for fixing a value of the first memory cell; a first arithmetic circuit that decides a next state of the one node based on a value indicating a state of the other node and the interaction coefficient; and a second arithmetic circuit that decides whether or not to record a value indicating the next state in the first memory cell according to a value of the flag.
Abstract:
A control system for controlling a quantum computer is coupled to an analog control unit configured to generate a control signal for controlling a quantum bit device including a plurality of quantum bits. The control system converts, first control flow data which is described in a code format and defines control details of the quantum bit device into second control flow data which defines the control details of the quantum bit device by the analog control unit; and generate a plurality of the control data patterns from the second control flow data based on the third setting information.
Abstract:
A semiconductor device has a plurality of units, each of which includes a first memory cell that stores a value indicating a state of one node of an interaction model, a second memory cell that stores an interaction coefficient indicating an interaction from a node connected to the one node, and a third memory cell that stores a bias coefficient of the one node. Furthermore, the semiconductor device has a computing circuit that determines a value indicating a next state of the one node based on a value indicating a state of the connected node, the interaction coefficient and the bias coefficient. Also, each of the second memory cell and the third memory cell in the plurality of units includes multi-valued memory cells.
Abstract:
A highly-convenient information processing system capable of obtaining a solution of a problem under conditions desired by a user and a management apparatus capable of enhancing the convenience of the information processing system are suggested. An information processing system includes: a host unit equipped with one or more semiconductor chips that execute a ground-state search of an Ising model; and an operation unit that provides a user interface for a user to designate a problem; and a management unit that converts the problem designated by the user by using the user interface into the Ising model and controls the host unit to have the semiconductor chip perform the ground-state search of the converted Ising model; wherein the user can designate a condition for solving the problem by using the user interface; wherein the management unit generates an operating condition of the semiconductor chip according to the condition designated by the user and reports the generated operating condition and the Ising model of the problem designated by the user to the host unit; and wherein the host unit controls the semiconductor chip in accordance with the operating condition reported from the management unit.