摘要:
A method for measuring the concentration of the metal solution and reducing agent solution within the electroless plating solution is disclosed. Raman spectroscopy is used to measure the concentration of each solution within the electroless plating solution after they have been mixed together. By measuring the concentration of each solution prior to providing the solution to a plating cell, the concentration of the individual solutions can be adjusted so that the targeted concentration of each solution is achieved. Additionally, each solution can be individually analyzed using Raman spectroscopy prior to mixing with the other solutions. Based upon the Raman spectroscopy measurements of the individual solutions prior to mixing, the individual components that make up each solution can be adjusted prior to mixing so that the targeted component concentration can be achieved.
摘要:
A method for measuring the concentration of the metal solution and reducing agent solution within the electroless plating solution is disclosed. Raman spectroscopy is used to measure the concentration of each solution within the electroless plating solution after they have been mixed together. By measuring the concentration of each solution prior to providing the solution to a plating cell, the concentration of the individual solutions can be adjusted so that the targeted concentration of each solution is achieved. Additionally, each solution can be individually analyzed using Raman spectroscopy prior to mixing with the other solutions. Based upon the Raman spectroscopy measurements of the individual solutions prior to mixing, the individual components that make up each solution can be adjusted prior to mixing so that the targeted component concentration can be achieved.
摘要:
A method and apparatus for processing a semiconductor substrate including depositing a capping layer upon a conductive material formed on the substrate, reducing oxide formation on the capping layer, and then depositing a dielectric material. A method and apparatus for processing a semiconductor substrate including depositing a capping layer upon a conductive material formed on a substrate, exposing the capping layer to a plasma, heating the substrate to more than about 100° C., and depositing a low dielectric constant material.
摘要:
A method and apparatus for processing a semiconductor substrate including depositing a capping layer upon a conductive material formed on the substrate, reducing oxide formation on the capping layer, and then depositing a dielectric material. A method and apparatus for processing a semiconductor substrate including depositing a capping layer upon a conductive material formed on a substrate, exposing the capping layer to a plasma, heating the substrate to more than about 100° C., and depositing a low dielectric constant material.
摘要:
A method and apparatus for processing a semiconductor substrate including depositing a capping layer upon a conductive material formed on the substrate, reducing oxide formation on the capping layer, and then depositing a dielectric material. A method and apparatus for processing a semiconductor substrate including depositing a capping layer upon a conductive material formed on a substrate, exposing the capping layer to a plasma, heating the substrate to more than about 100° C., and depositing a low dielectric constant material.
摘要:
Embodiments of the invention provide methods for depositing a material onto a surface of a substrate by using one or more electroless, electrochemical plating, CVD and/or ALD processes. Embodiments of the invention provide a method for depositing a seed layer on a substrate with an electroless process and to subsequently fill interconnect features on the substrate with an ECP process on a single substrate processing platform. Other aspects provide a method for depositing a seed layer on a substrate, fill interconnect features on a substrate, or sequentially deposit both a seed layer and fill interconnect features on the substrate. One embodiment provides a method for forming a capping layer over substrate interconnects. Methods include the use of a vapor dryer for pre- and post-deposition cleaning of substrates as well as a brush box chamber for post-deposition cleaning.
摘要:
The present invention generally provides an apparatus and method of processing substrates to uniformly remove any residual contamination from the surface of a substrate by use of an appropriate cleaning chemistry and contact with a cleaning medium. In one embodiment, the cleaning medium, such as is a brush or a scrubbing component that is positioned in a cleaning module. In one embodiment, the process of cleaning the surface of a substrate W is completed by “scrubbing” the surface of the substrate while using a cleaning solution that is selected to chemically etch a material from the surface of the substrate. In one aspect, the amount of material removed from the surface of a substrate is only about 10-30 Angstroms (Å). In one embodiment, the substrate surface is cleaned by use of a scrubbing process that uses a fluid that doesn't react with the exposed materials on the surface of the substrate. The fluid is thus used to lubricate the surfaces in contact and to carry any abraded material away from the surface of the substrate. In one aspect, the fluid may be DI water. In one aspect, it may be desirable to add ultrasonic or megasonic agitation to the substrate during the cleaning process to help remove or dislodge material from the surface of the substrate.
摘要:
Embodiments of the invention provide a cluster tool configured to deposit a material onto a substrate surface by using one or more electroless, electrochemical plating, CVD and/or ALD processing chambers. In one aspect, a ruthenium-containing catalytic layer is formed. Embodiments of the invention provide a hybrid deposition system configured to deposit a seed layer on a substrate with an electroless process and to subsequently fill interconnect features on the substrate with an ECP cell. Other aspects provide an electroless deposition system configured to deposit a seed layer on a substrate, fill interconnect features on a substrate, or sequentially deposit both a seed layer and fill interconnect features on the substrate. One embodiment provides an electroless deposition system configured to form a capping layer over substrate interconnects. The system includes a vapor dryer for pre- and post-deposition cleaning of substrates as well as a brush box chamber for post-deposition cleaning.
摘要:
A composite insulating film including three layers is formed on a substrate having a gap. The first layer partially fills the gap and contains a dielectric material having a low dielectric constant, such as halogen-doped silicate glass. The second layer is formed over the first layer, and contains an undoped dielectric material such as silicon oxide, nitride, or oxynitride. The second layer is more stable and integrable, and less susceptible to moisture absorption and outgassing, than the first layer. The second layer is substantially smaller in thickness than the first layer, and at least substantially fills the gap. The third layer is formed over the second layer, and contains a dielectric material having a low dielectric constant, such as halogen-doped silicate glass. In a specific embodiment, the first layer is formed by plasma-enhanced chemical vapor deposition in which reactive species are generated from a process gas mixture by plasma for sputtering the first layer.
摘要:
Embodiments of the invention generally provide a method for depositing silicon-containing films. In one embodiment, a method for depositing silicon-containing material film on a substrate includes flowing a nitrogen and carbon containing chemical into a deposition chamber, flowing a silicon-containing source chemical having silicon-nitrogen bonds into the processing chamber, and heating the substrate disposed in the chamber to a temperature less than about 550 degrees Celsius. In another embodiment, the silicon containing chemical is trisilylamine and the nitrogen and carbon containing chemical is (CH3)3—N.