摘要:
In one aspect of the present invention, exemplary apparatus and methods are provided for electropolishing and/or electroplating processes for semiconductor wafers. One exemplary apparatus includes a cleaning module having an edge clean assembly (930) to remove metal residue on the bevel or edge portion of a wafer (901). The edge cleaning apparatus includes a nozzle head (1030) configured to supply a liquid and a gas to a major surface of the wafer, and supplies the gas radially inward of the location the liquid is supplied to reduce the potential of the liquid from flowing radially inward to the metal film formed on the wafer.
摘要:
A wafer chuck assembly for holding a wafer during electroplating and/or electropolishing of the wafer includes a wafer chuck for receiving the wafer. The wafer chuck assembly also includes an actuator assembly for moving the wafer chuck between a first and a second position. When in the first position, the wafer chuck is opened. When in the second position, the wafer chuck is closed.
摘要:
A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process. The gap can be increased or reduced by 0.5λ/N for each rotation of the chuck, where λ is wavelength of ultra/mega sonic wave, N is an integer number between 2 and 1000. The gap is varied in the range of 0.5λn during the cleaning process, where λ is wavelength of ultra/mega sonic wave, and n is an integer number starting from 1.
摘要:
An apparatus for electropolishing and/or electroplating metal layers on a semiconductor wafer includes a receptacle having a plurality of section walls. The apparatus includes a wafer chuck configured to hold the semiconductor wafer and to position the semiconductor wafer within the receptacle with a surface of the semiconductor wafer adjacent to top portions of the plurality of section walls. The apparatus also includes a first plurality of sensors configured to measure alignment between the center of one of the plurality of section walls to the center of the wafer chuck, and thus the center of the semiconductor wafer.
摘要:
A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process. The gap can be increased or reduced by 0.5λ/N for each rotation of the chuck, where λ is wavelength of ultra/mega sonic wave, N is an integer number between 2 and 1000. The gap is varied in the range of 0.5λn during the cleaning process, where λ is wavelength of ultra/mega sonic wave, and n is an integer number starting from 1.
摘要:
The invention discloses a low-cost apparatus for chemical solution preparation with controlled process parameters such as chemical age, temperature, yield of active ingredients at the point of use. In addition, this apparatus provides chamber-to-chamber consistency on these parameters across multiple processing chambers on a single wafer wet-clean system. The invention also discloses a method to use chemical solution mixture resident time to achieve optimal combined effect of temperature, reactivity and yield of active ingredients of chemical solution mixture for best wafer treatment results.
摘要:
A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process by turn the semiconductor substrate or the ultra/mega sonic device clockwise or counter clockwise.
摘要:
A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process by turn the semiconductor substrate or the ultra/mega sonic device clockwise or count clockwise.
摘要:
A electrochemical deposition system which has a 3-D stacked architecture comprises a factory interface for receiving semiconductor wafers, a mainframe comprising a mainframe transfer robot and a plurality of wafer holder assemblies which disposed on the top thereof, a plurality of electroplating cells disposed within the mainframe, a plurality of cleaning cells disposed within the mainframe and located below the electroplating cells, a plurality of thermal treatment chambers disposed in between the mainframe and the factory interface, and a fluid distribution system fluidly connected to the electroplating cells and the cleaning cells, wherein the mainframe transfer robot transfers the semiconductor wafer from the factory interface and within the electroplating cells, the cleaning cells, and the thermal treatment chambers. As a result, the system of the present invention is expandable to accommodate newly-added processing units without overmuch increased footprint.
摘要:
The present invention provides an apparatus and method for rapid and uniform thermal treatment of semiconductor workpieces in two closely arranged thermal treatment chambers with a retractable door between them. The retractable door moves in between two thermal treatment chambers during heating or cooling process, and additional heating and cooling sources are provided for double-side thermal treatment of the semiconductor workpiece.