Abstract:
The disclosure relates to a method for processing a laser device, for example a III-V on silicon laser, including: providing a carrier substrate; forming a grating structure on the carrier substrate, wherein the grating structure delimits a cavity on a surface of the carrier substrate; placing a die in the cavity and bonding the die to the carrier substrate, wherein the die comprises an active region including a III-V semiconductor material; transferring the die from the carrier substrate to a silicon substrate by bonding an exposed side of the die to the silicon substrate and subsequently debonding the carrier substrate from the die; and forming a photonic structure, for example a silicon waveguide, coupled to the die.
Abstract:
According to a preferred embodiment of the method of the invention, an assembly is produced comprising a temporary wafer and one or more tiles that are removably attached to the temporary wafer, preferably through a temporary adhesive layer. The tiles comprise a carrier portion and an active material portion. The active material portion is attached to the temporary carrier. The assembly further comprises a single continuous layer of the first material surrounding each of the one or more tiles. Then the back side of the carrier portions of the tiles and of the continuous layer of the first material are simultaneously planarized, and the planarized back sides of the tiles and of the continuous layer of the first material are bonded to a permanent carrier wafer, after which the temporary carrier wafer is removed. The method results in a hybrid wafer comprising a planar top layer formed of the material of the continuous layer with one or more islands embedded therein, the top layer of the islands being formed by the top layer of the active material portion of the one or more tiles.
Abstract:
An integrated circuit for an imaging device including an array of photo-sensitive areas is disclosed. In one aspect the integrated circuit includes a first multi-layer structure and a second multi-layer structure arranged over a first and a second photo-sensitive area, respectively. The second multi-layer structures each have a bottom and a top reflective structure and a spacer layer arranged therebetween. The spacer layer has a thickness such that the multi-layer structure selectively transmits a narrow range of wavelengths of electro-magnetic radiation. The bottom and top reflective structures include a stack of alternating layers of a first and a second material. Thickness and/or material of the alternating layers of the first multi-layer structure differ from thickness and/or material of the alternating layers of the second multi-layer structure.
Abstract:
The present invent provides a method comprising forming a first wafer comprising a first substrate of a group IV semiconductor, and a group III-V semiconductor device structure formed by selective area epitaxial growth on a surface portion of a front side of the first substrate. The method further comprises forming a second wafer comprising a second substrate of a group IV semiconductor, and a group IV semiconductor device structure formed on a front side of the second substrate, and bonding the first wafer to the second wafer with the front side of the first substrate facing the front side of the second wafer.
Abstract:
An integrated circuit for an imaging device including an array of photo-sensitive areas is disclosed. In one aspect the integrated circuit includes a first multi-layer structure and a second multi-layer structure arranged over a first and a second photo-sensitive area, respectively. The second multi-layer structures each have a bottom and a top reflective structure and a spacer layer arranged therebetween. The spacer layer has a thickness such that the multi-layer structure selectively transmits a narrow range of wavelengths of electro-magnetic radiation. The bottom and top reflective structures include a stack of alternating layers of a first and a second material. Thickness and/or material of the alternating layers of the first multi-layer structure differ from thickness and/or material of the alternating layers of the second multi-layer structure.
Abstract:
Micro bump interconnection structures for semiconductor devices, and more specifically, a substrate structure comprising an array of micrometer scale copper pillar based structures or micro bumps eventually comprising a solder material and a method for manufacturing the same are provided.
Abstract:
Micro bump interconnection structures for semiconductor devices, and more specifically, a substrate structure comprising an array of micrometer scale copper pillar based structures or micro bumps eventually comprising a solder material and a method for manufacturing the same are provided