Abstract:
A memory cell can include a chalcogenide material having a narrowed end. A conductive material can be positioned at the narrowed end of the chalcogenide material. A dielectric barrier layer can be disposed between the conductive material and the narrowed end of the chalcogenide material. A dielectric spacer material can be positioned along a narrowed segment of the chalcogenide material.
Abstract:
Embodiments of the present disclosure describe electrode configurations to increase electro-thermal isolation of phase-change memory elements and associated techniques. In an embodiment, an apparatus includes a plurality of phase-change memory (PCM) elements, wherein individual PCM elements of the plurality of PCM elements include a phase-change material layer, a first electrode layer disposed on the phase-change material layer and in direct contact with the phase-change material layer, and a second electrode layer disposed on the first electrode layer and in direct contact with the first electrode layer. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the present disclosure describe electrode configurations to increase electro-thermal isolation of phase-change memory elements and associated techniques. In an embodiment, an apparatus includes a plurality of phase-change memory (PCM) elements, wherein individual PCM elements of the plurality of PCM elements include a phase-change material layer, a first electrode layer disposed on the phase-change material layer and in direct contact with the phase-change material layer, and a second electrode layer disposed on the first electrode layer and in direct contact with the first electrode layer. Other embodiments may be described and/or claimed.
Abstract:
A memory cell design is disclosed. In an embodiment, the memory cell structure includes at least one memory bit layer stacked between top and bottom electrodes. The memory bit layer provides a storage element for a corresponding memory cell. One or more additional conductive layers may be included between the memory bit layer and either, or both, of the top or bottom electrodes to provide a better ohmic contact. In any case, a dielectric liner structure is provided on sidewalls of the memory bit layer. The liner structure includes a dielectric layer, and may also include a second dielectric layer on a first dielectric layer. Either or both first dielectric layer or second dielectric layer comprises a high-k dielectric material. As will be appreciated, the dielectric liner structure effectively protects the memory bit layer from lateral erosion and contamination during the etching of subsequent layers beneath the memory bit layer.
Abstract:
Various embodiments of a three-dimensional cross-point (3D X-point) memory cell design include one or more electrodes having an increased resistance compared to existing memory cell designs or compared to other electrodes within a same memory cell. A memory device includes an array of memory cells with each memory cell arranged between a word line and a bit line of the memory device. Some embodiments include additional material layers to increase memory cell resistance. Some embodiments include electrodes having an increased thickness to increase the resistance. Some embodiments include electrodes having a composition with a higher resistivity. Some embodiments include electrodes with increased interface resistance. Some embodiments include a combination of such features. In any case, the resulting increased memory cell resistance causes a reduction in the transient selection current for the given memory cell.
Abstract:
Described herein are multi-deck memory devices with an inverted deck. For example, in one embodiment a memory device includes a first deck of memory cells including layers of material, including a layer of storage material and a layer of selector material, and a second deck of memory cells over the first deck of memory cells, the second deck comprising layers of material in an order opposite relative to the first deck. In one such embodiment, conductive bitlines located between the first and second decks are common to both decks. Inverting the second deck can enable operating the decks symmetrically despite accessing the decks with opposite polarity voltages.
Abstract:
Embodiments of the present disclosure describe electrode configurations to increase electro-thermal isolation of phase-change memory elements and associated techniques. In an embodiment, an apparatus includes a plurality of phase-change memory (PCM) elements, wherein individual PCM elements of the plurality of PCM elements include a phase-change material layer, a first electrode layer disposed on the phase-change material layer and in direct contact with the phase-change material layer, and a second electrode layer disposed on the first electrode layer and in direct contact with the first electrode layer. Other embodiments may be described and/or claimed.