Abstract:
A dielectric material incorporating a graded carbon adhesion layer whereby the content of C increases with layer thickness and a multiphase ultra low k dielectric comprising a porous SiCOH dielectric material having a k less than 2.7 and a modulus of elasticity greater than 7 GPa is described. A semiconductor integrated circuit incorporating the above dielectric material in interconnect wiring is described and a semiconductor integrated circuit incorporating the above multiphase ultra low k dielectric in a gate stack spacer of a FET is described.
Abstract:
Hall effect devices and field effect transistors are formed incorporating a carbon-based nanostructure layer such as carbon nanotubes and/or graphene with a sacrificial metal layer formed there over to protect the carbon-based nanostructure layer during processing.
Abstract:
Hall effect devices and field effect transistors are formed incorporating a carbon-based nanostructure layer such as carbon nanotubes and/or graphene with a sacrificial metal layer formed there over to protect the carbon-based nanostructure layer during processing.
Abstract:
Hall effect devices and field effect transistors are formed incorporating a carbon-based nanostructure layer such as carbon nanotubes and/or graphene with a sacrificial metal layer formed there over to protect the carbon-based nanostructure layer during processing.
Abstract:
Integrated circuits including at least two electrically conductive interconnect lines and methods of manufacturing generally include a surface of the integrated circuit. At least two electrically conductive interconnect lines are separated by a space of less than 90 nm and are formed on the surface. Each of the at least two interconnect lines includes a metal cap, a copper conductor having an average grain size greater than a line width of the interconnect. A liner layer is provided, wherein the liner layer and the metal cap encapsulate the copper conductor. A dielectric layer overlaying the at least two electrically conductive interconnect lines and extending along sidewalls thereof is provided, wherein the dielectric layer is configured to provide an airgap between the at least two interconnect lines at the spacing.
Abstract:
An in-situ process is described incorporating plasma enhanced chemical vapor deposition comprising flowing at least one of a Si, Si═C, B, Si═B, Si═B═C, and B═C containing precursor, and a N containing precursors at first times and removing the N precursor at second times and starting the flow of an oxidant gas and a porogen gas into the chamber. A dielectric layer is described comprising a network having inorganic random three dimensional covalent bonding throughout the network which contains at least one SiCN, SiCNH, SiN, SiNH, BN, BNH, CBN, CBNH, BSiN, BSiNH, SiCBN and SiCBNH as a first component and a low k dielectric as a second component adjacent thereto.