Abstract:
An electronic component to be encapsulated is introduced into a mold cavity. The mold cavity includes at least first and second halves, and at least one of the halves is formed with a negative of a thermal-interface-material engaging pattern thereon. An encapsulating material, which encapsulates the electronic component and engages the negative of the thermal-interface-material engaging pattern, is introduced into the mold cavity. The encapsulating material is allowed to solidify such that a thermal-interface-material engaging surface of the encapsulant solidifies with the thermal-interface-material engaging pattern thereon. During subsequent assembly, the thermal-interface-material engaging pattern engages thermal interface material to resist lateral motion of the thermal interface material.
Abstract:
An electronic component to be encapsulated is introduced into a mold cavity. The mold cavity includes at least first and second halves, and at least one of the halves is formed with a negative of a thermal-interface-material engaging pattern thereon. An encapsulating material, which encapsulates the electronic component and engages the negative of the thermal-interface-material engaging pattern, is introduced into the mold cavity. The encapsulating material is allowed to solidify such that a thermal-interface-material engaging surface of the encapsulant solidifies with the thermal-interface-material engaging pattern thereon. During subsequent assembly, the thermal-interface-material engaging pattern engages thermal interface material to resist lateral motion of the thermal interface material.
Abstract:
An electric potential is applied to first and second electrodes on opposite sides of a gap between an electronic component and a heat spreader. At least one of a thermal interface material in the gap, the electronic component and the heat spreader is subjected to a changing physical condition. The capacitance is monitored. Such a method can be practiced using an array of components sharing a common heat spreader. An assembly for testing thermal interfaces includes a printed circuit board, a plurality of electronic components mounted to and operatively associated with the printed circuit board, a heat spreader positioned for absorbing heat generated by the electronic components, a first electrode associated with the heat spreader, a plurality of second electrodes associated, respectively, with the electronic component, and a device for monitoring electrical capacitances. The technique may be employed for monitoring physical changes in electronic devices.
Abstract:
An electric potential is applied to first and second electrodes on opposite sides of a gap between an electronic component and a heat spreader. At least one of a thermal interface material in the gap, the electronic component and the heat spreader is subjected to a changing physical condition. The capacitance is monitored. Such a method can be practiced using an array of components sharing a common heat spreader. An assembly for testing thermal interfaces includes a printed circuit board, a plurality of electronic components mounted to and operatively associated with the printed circuit board, a heat spreader positioned for absorbing heat generated by the electronic components, a first electrode associated with the heat spreader, a plurality of second electrodes associated, respectively, with the electronic component, and a device for monitoring electrical capacitances. The technique may be employed for monitoring physical changes in electronic devices.
Abstract:
A volumetric integrated circuit manufacturing method is provided. The method includes assembling a slab element of elongate chips, exposing a wiring layer between adjacent elongate chips of the slab element, metallizing a surface of the slab element at and around the exposed wiring layer to form a metallized surface electrically coupled to the wiring layer and passivating the metallized surface to hermetically seal the metallized surface.
Abstract:
A system comprising a first dielectric element and a second dielectric element each having a first surface, wherein the first surface of the first dielectric element and the first surface of the second dielectric element are joined. The system further comprises one or more enclosed voids within the joined first and second dielectric elements. The system further comprises a flexible battery in a first enclosed void of the one or more enclosed voids, the flexible battery having a thickness of less than about 150 microns.
Abstract:
An assembly process for a heatsink attachment module for a chip packaging apparatus is provided and includes attaching a semiconductor chip to a substrate to form a module subassembly, placing a load frame and shim in a fixture, dispensing adhesive to the load frame and loadably placing the module subassembly chip face down in the fixture.
Abstract:
An apparatus for reducing EMI at the micro-electronic-component level includes a substrate having a ground conductor integrated therein. A micro-electronic component such as an integrated circuit is mounted to the substrate. An electrically conductive lid is mounted to the substrate, thereby forming a physical interface with the substrate. The electrically conductive lid substantially covers the micro-electronic component. A conductive link is provided to create an electrical connection between the electrically conductive lid and the ground conductor at the physical interface.
Abstract:
An electronic component to be encapsulated is introduced into a mold cavity. The mold cavity includes at least first and second halves, and at least one of the halves is formed with a negative of a thermal-interface-material engaging pattern thereon. An encapsulating material, which encapsulates the electronic component and engages the negative of the thermal-interface-material engaging pattern, is introduced into the mold cavity. The encapsulating material is allowed to solidify such that a thermal-interface-material engaging surface of the encapsulant solidifies with the thermal-interface-material engaging pattern thereon. During subsequent assembly, the thermal-interface-material engaging pattern engages thermal interface material to resist lateral motion of the thermal interface material.
Abstract:
An electric potential is applied to first and second electrodes on opposite sides of a gap between an electronic component and a heat spreader. At least one of a thermal interface material in the gap, the electronic component and the heat spreader is subjected to a changing physical condition. The capacitance is monitored. Such a method can be practiced using an array of components sharing a common heat spreader. An assembly for testing thermal interfaces includes a printed circuit board, a plurality of electronic components mounted to and operatively associated with the printed circuit board, a heat spreader positioned for absorbing heat generated by the electronic components, a first electrode associated with the heat spreader, a plurality of second electrodes associated, respectively, with the electronic component, and a device for monitoring electrical capacitances. The technique may be employed for monitoring physical changes in electronic devices.