摘要:
A processor-memory system, a stacked-wafer processor-memory system, and a method of fabricating a processor-memory system are disclosed. In an embodiment, the invention provides a processor-memory system comprising a memory area, a multitude of specialized processors, and a management processor. The specialized processors are embedded in the memory area, and each of the specialized processors is configured for performing a specified set of operations using an associated memory domain in the memory area. The management processor is provided to control operations of an associated set of the specialized processors. In one embodiment, each of the specialized processors controls a respective one associated memory domain in the memory area. In an embodiment, the processor-memory system further comprises a specialized processor wafer. The specialized processor wafer includes the memory area, and the multitude of specialized processors are embedded in the specialized processor wafer.
摘要:
A processor-memory system, a stacked-wafer processor-memory system, and a method of fabricating a processor-memory system are disclosed. In an embodiment, the invention provides a processor-memory system comprising a memory area, a multitude of specialized processors, and a management processor. The specialized processors are embedded in the memory area, and each of the specialized processors is configured for performing a specified set of operations using an associated memory domain in the memory area. The management processor is provided to control operations of an associated set of the specialized processors. In one embodiment, each of the specialized processors controls a respective one associated memory domain in the memory area. In an embodiment, the processor-memory system further comprises a specialized processor wafer. The specialized processor wafer includes the memory area, and the multitude of specialized processors are embedded in the specialized processor wafer.
摘要:
A method including implanting a region of a substrate with a dopant, and forming a through-substrate via in the substrate adjacent to a device, the through-substrate via passing through the region.
摘要:
A method of making a semiconductor device includes disposing a mask on a substrate; etching the mask to form an opening in the mask; etching a trench in the substrate beneath the opening in the mask; and implanting a dopant in an area of the substrate beneath the opening of the mask, the dopant capable of gettering mobile ions that can contaminate the substrate; wherein the dopant extends through the substrate from a sidewall of the trench and an endwall of the trench.
摘要:
A structure to detect changes in the integrity of vertical electrical connection structures including a semiconductor layer and an electrically conductive material extending through an entire depth of the semiconductor layer. The electrically conductive material has a geometry that encloses a pedestal portion of the semiconductor layer within an interior perimeter of the electrically conductive material. At least one semiconductor device is present on the pedestal portion of the semiconductor layer within the perimeter of the electrically conductive material.
摘要:
A structure including a first intermetallic compound and an alloy layer parallel to a sidewall of an opening and separating a diffusion barrier from a conductive material, the diffusion barrier is in direct contact with the alloy layer, the alloy layer is in direct contact with the first intermetallic compound, the first intermetallic compound is in direct contact with the conductive material, the first intermetallic compound is a precipitate within a solid solution of an alloying material of the alloy layer and the conductive material, and is molecularly bound to both the alloy layer and the conductive material, the alloy layer excludes the conductive material, and a first high friction interface located between the diffusion barrier and the alloy layer extending in a direction parallel to the sidewall of the opening, the first high friction interface results in a mechanical bond between the diffusion barrier and the alloy layer.
摘要:
A structure including a seed layer located directly on top of and conformal to the diffusion barrier, wherein the seed layer is parallel to the sidewall and bottom of the opening, the seed layer comprises a crystalline structure suitable for plating copper; a first intermetallic compound and an alloy layer parallel to the sidewall of the opening and separating the seed layer from the conductive material, the first intermetallic compound is a precipitate within a solid solution of an alloying material of the alloy layer and the conductive material, and is molecularly bound to both the alloy layer and the conductive material, and a first high friction interface located between the seed layer and the alloy layer extending in a direction parallel to the sidewall of the opening, wherein the first high friction interface results in a mechanical bond between the seed layer and the alloy layer.
摘要:
A method for fabricating through-silicon vias (TSVs) for semiconductor devices is provided. Specifically, the method involves utilizing copper contact pads in a back-end-of-line wiring level, wherein the copper contact pads act as cathodes for performing an electroplating technique to fill TSVs with plated-conductive material (e.g., copper) from an electroplating solution. Moreover, the method provides a way to fill high aspect ratio TSVs with minimal additional semiconductor fabrication process steps, which can increase the silicon area that is available for forming additional electronic components on integrated circuits.
摘要:
A method for fabricating through-silicon vias (TSVs) for semiconductor devices is provided. Specifically, the method involves utilizing copper contact pads in a back-end-of-line wiring level, wherein the copper contact pads act as cathodes for performing an electroplating technique to fill TSVs with plated-conductive material (e.g., copper) from an electroplating solution. Moreover, the method provides a way to fill high aspect ratio TSVs with minimal additional semiconductor fabrication process steps, which can increase the silicon area that is available for forming additional electronic components on integrated circuits.
摘要:
The formation of TSVs (through substrate vias) for 3D applications has proven to be defect dependent upon the type of starting semiconductor substrate employed. In addition to the initial formation of TSVs via Bosch processing, backside 3D wafer processing has also shown a defect dependency on substrate type. High yield of TSV formation can be achieved by utilizing a substrate that embodies bulk micro defects (BMD) at a density between 1e4/cc (particles per cubic centimeter) and 1e7/cc and having equivalent diameter less than 55 nm (nanometers).