摘要:
A method for producing extreme ultraviolet light includes producing a target material at a target location; supplying pump energy to a gain medium of at least one optical amplifier that has an amplification band to produce an amplified light beam; propagating the amplified light beam through the gain medium using one or more optical components of a set of optical components; delivering the amplified light beam to the target location using one or more optical components of the optical component set; producing with a guide laser a guide laser beam that has a wavelength outside of the amplification band of the gain medium and inside the wavelength range of the optical components; and directing the guide laser beam through the optical component set to thereby align one or more optical components of the optical component set.
摘要:
A method for producing extreme ultraviolet light includes producing a target material at a target location; supplying pump energy to a gain medium of at least one optical amplifier that has an amplification band to produce an amplified light beam; propagating the amplified light beam through the gain medium using one or more optical components of a set of optical components; delivering the amplified light beam to the target location using one or more optical components of the optical component set; producing with a guide laser a guide laser beam that has a wavelength outside of the amplification band of the gain medium and inside the wavelength range of the optical components; and directing the guide laser beam through the optical component set to thereby align one or more optical components of the optical component set.
摘要:
A laser light source is disclosed having a laser oscillator producing an output beam; a first amplifier amplifying the output beam to produce a first amplified beam, and a second amplifier amplifying the first amplified beam to produce a second amplified beam. For the source, the first amplifier may have a gain medium characterized by a saturation energy (Es, 1) and a small signal gain (go, 1); and the second amplifier may have a gain medium characterized by a saturation energy (Es, 2) and a small signal gain (go, 2), with (go, 1)>(go, 2) and (Es, 2)>(Es, 1). In another aspect, a laser oscillator of a laser light source may be a cavity dumped laser oscillator, e.g. a mode-locked laser oscillator, q-switched laser oscillator and may further comprising a temporal pulse stretcher.
摘要翻译:公开了具有产生输出光束的激光振荡器的激光源; 放大所述输出光束以产生第一放大光束的第一放大器,以及放大所述第一放大光束以产生第二放大光束的第二放大器。 对于源极,第一放大器可以具有以饱和能量(E S,S 1)和小信号增益(g 1,...)为特征的增益介质; 并且第二放大器可以具有特征在于饱和能量(E SUB,2 N)和小信号增益(g 0,o 2)的增益介质,其中(g < (o,SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB >)。 在另一方面,激光光源的激光振荡器可以是空腔倾覆的激光振荡器,例如。 模式锁定激光振荡器,q切换激光振荡器,并且还可以包括时间脉冲展开器。
摘要:
A device is described herein which may comprise an oscillator having an oscillator cavity length, L0, and defining an oscillator path; and a multi-pass optical amplifier coupled with the oscillator to establish a combined optical cavity including the oscillator path, the combined cavity having a length, Lcombined, where Lcombined=(N+x)*L0, where “N” is an integer and “x” is a number between 0.4 and 0.6.
摘要:
An extreme ultraviolet light system includes a drive laser system that produces an amplified light beam; a target material delivery system configured to produce a target material at a target location; a beam delivery system configured to receive the amplified light beam emitted from the drive laser system and to direct the amplified light beam toward the target location; and a metrology system. The beam delivery system includes converging lens configured and arranged to focus the amplified light beam at the target location. The metrology system includes a light collection system configured to collect a portion of the amplified light beam reflected from the converging lens and a portion of a guide laser beam reflected from the converging lens. The light collection system includes a dichroic optical device configured to optically separate the portions.
摘要:
An extreme-ultraviolet (EUV) light source comprising an optic, a target material, and a laser beam passing through said optic along a beam path to irradiate said target material. The EUV light source further includes a system generating a gas flow directed toward said target material along said beam path, said system having a tapering member surrounding a volume and a plurality of gas lines, each gas line outputting a gas stream into said volume.
摘要:
A method and apparatus that may comprise an EUV light producing mechanism utilizing an EUV plasma source material comprising a material that will form an etching compound, which plasma source material produces EUV light in a band around a selected center wavelength comprising: an EUV plasma generation chamber; an EUV light collector contained within the chamber having a reflective surface containing at least one layer comprising a material that does not form an etching compound and/or forms a compound layer that does not significantly reduce the reflectivity of the reflective surface in the band; an etchant source gas contained within the chamber comprising an etchant source material with which the plasma source material forms an etching compound, which etching compound has a vapor pressure that will allow etching of the etching compound from the reflective surface. The etchant source material may comprises a halogen or halogen compound. The etchant source material may be selected based upon the etching being stimulated in the presence of photons of EUV light and/or DUV light and/or any excited energetic photons with sufficient energy to stimulate the etching of the plasma source material. The apparatus may further comprise an etching stimulation plasma generator providing an etching stimulation plasma in the working vicinity of the reflective surface; and the etchant source material may be selected based upon the etching being stimulated by an etching stimulation plasma. There may also be an ion accelerator accelerating ions toward the reflective surface. The ions may comprise etchant source material. The apparatus and method may comprise a part of an EUV production subsystem with an optical element to be etched of plasma source material.
摘要:
A method and apparatus may comprise a line narrowed pulsed excimer or molecular fluorine gas discharge laser system which may comprise a seed laser oscillator producing an output comprising a laser output light beam of pulses which may comprise a first gas discharge excimer or molecular fluorine laser chamber; a line narrowing module within a first oscillator cavity; a laser amplification stage containing an amplifying gain medium in a second gas discharge excimer or molecular fluorine laser chamber receiving the output of the seed laser oscillator and amplifying the output of the seed laser oscillator to form a laser system output comprising a laser output light beam of pulses, which may comprise a ring power amplification stage.
摘要:
An apparatus/method which may comprise a line narrowed pulsed excimer or molecular fluorine gas discharge laser system which may comprise a seed laser oscillator producing an output comprising a seed laser output light beam of pulses which may comprise a first gas discharge excimer or molecular fluorine laser chamber; a line narrowing module within a first oscillator cavity; a laser amplification stage containing an amplifying gain medium in a second gas discharge excimer or molecular fluorine laser chamber receiving the output of the seed laser oscillator and amplifying the output of the seed laser oscillator to form a laser system output comprising a laser system output light beam of pulses, which may comprise a ring power amplification stage; a seed injection mechanism.
摘要:
An apparatus and method which may comprise a pulsed gas discharge laser which may comprise a seed laser portion; an amplifier portion receiving the seed laser output and amplifying the optical intensity of each seed pulse; a pulse stretcher which may comprise: a first beam splitter operatively connected with the first delay path and a second pulse stretcher operatively connected with the second delay path; a first optical delay path tower containing the first beam splitter; a second optical delay path tower containing the second beam splitter; one of the first and second optical delay paths may comprise: a plurality of mirrors defining the respective optical delay path including mirrors located in the first tower and in the second tower; the other of the first and second optical delay paths may comprise: a plurality of mirrors defining the respective optical delay path including mirrors only in one of the first tower and the second tower.