摘要:
An example image sensor structure includes an image layer. The image layer includes an array of light detectors disposed therein. A device stack is disposed over the image layer. An array of light guides is disposed in the device stack. Each light guide is associated with at least one light detector of the array of light detectors. A passivation stack is disposed over the device stack. The passivation stack includes a bottom surface in direct contact with a top surface of the light guides. An array of nanowells is disposed in a top layer of the passivation stack. Each nanowell is associated with a light guide of the array of light guides. A crosstalk blocking metal structure is disposed in the passivation stack. The crosstalk blocking metal structure reduces crosstalk within the passivation stack.
摘要:
A system includes: an objective lens; a first light source to feed first illuminating light through the objective lens and into a flowcell (e.g., with a relatively thin film waveguide) to be installed in the system, the first illuminating light to be fed using a first grating on the flowcell; and a first image sensor to capture imaging light using the objective lens, wherein the first grating is positioned outside a field of view of the first image sensor. Dual-surface imaging can be performed. Flowcells with multiple swaths bounded by gratings can be used. An auto-alignment process can be performed.
摘要:
A device for base calling is provided. The device includes a receptacle configured to hold a biosensor having a sample surface holding a plurality of clusters during a sequence of sampling events, an array of sensors sensing information from clusters disposed in corresponding pixel areas of the sample surface during the sampling events and generate sequences of pixel signals and a communication port configured to output the sequences of pixel signals. The device also includes a signal processor coupled to the communication port and configured to receive and process at least one pixel signal in the sequences of pixel signals that mixes light gathered from at least two clusters in a corresponding pixel area, and to base call each of the at least two clusters using the at least one pixel signal.
摘要:
Biosensor including a device base having a sensor array of light sensors and a guide array of light guides. The light guides have input regions that are configured to receive excitation light and light emissions generated by biological or chemical substances. The light guides extend into the device base toward corresponding light sensors and have a filter material. The device base includes device circuitry electrically coupled to the light sensors and configured to transmit data signals. A passivation layer extends over the device base and forms an array of reaction recesses above the light guides. The biosensor also includes peripheral crosstalk shields that at least partially surround corresponding light guides of the guide array to reduce optical crosstalk between adjacent light sensors.
摘要:
Under one aspect, a device is provided for use in luminescent imaging. The device can include a photonic superlattice including a first material, the first material having a first refractive index. The first material can include first and second major surfaces and first and second pluralities of features defined through at least one of the first and second major surfaces, the features of the first plurality differing in at least one characteristic from the features of the second plurality. The photonic superlattice can support propagation of a first wavelength and a second wavelength approximately at a first angle out of the photonic superlattice, the first and second wavelengths being separated from one another by a first non-propagating wavelength that does not selectively propagate at the first angle out of the photonic superlattice.
摘要:
Biosensor including a device base having a sensor array of light sensors and a guide array of light guides. The light guides have input regions that are configured to receive excitation light and light emissions generated by biological or chemical substances. The light guides extend into the device base toward corresponding light sensors and have a filter material. The device base includes device circuitry electrically coupled to the light sensors and configured to transmit data signals. The biosensor also includes a shield layer having apertures that are positioned relative to the input regions of corresponding light guides such that the light emissions propagate through the apertures into the corresponding input regions. The shield layer extends between adjacent apertures and is configured to block the excitation light and the light emissions incident on the shield layer between the adjacent apertures.
摘要:
A biosensor for base calling is provided. The biosensor comprises a sampling device, which includes a sample surface that has an array of pixel areas and a solid-state imager that has an array of sensors. Each sensor generates pixel signals in each base calling cycle. Each pixel signal represents light gathered in one base calling cycle from one or more clusters in a corresponding pixel area of the sample surface. The biosensor further comprises a signal processor configured for connection to the sampling device. The signal processor receives and processes the pixel signals from the sensors for base calling in a base calling cycle, and uses the pixel signals from fewer sensors than a number of clusters base called in the base calling cycle. The pixel signals from the fewer sensors include at least one pixel signal representing light gathered from at least two clusters in the corresponding pixel area.
摘要:
Under one aspect, a device is provided for use in luminescent imaging. The device can include a photonic superlattice including a first material, the first material having a first refractive index. The first material can include first and second major surfaces and first and second pluralities of features defined through at least one of the first and second major surfaces, the features of the first plurality differing in at least one characteristic from the features of the second plurality. The photonic superlattice can support propagation of a first wavelength and a second wavelength approximately at a first angle out of the photonic superlattice, the first and second wavelengths being separated from one another by a first non-propagating wavelength that does not selectively propagate at the first angle out of the photonic superlattice.
摘要:
A method for reducing sequencing by synthesis cycle time using a microfluidic device is provided. The microfluidic device comprises a flow cell having an inlet port, an outlet port, and a flow channel extending between the inlet port and the outlet port, wherein the flow channel receives an analyte of interest and one or more reagents for analyzing and detecting molecules. To aid in the acceleration of the reactions, the microfluidic device comprises a mixing device to increase the rates of diffusion of the reagents from the fluid bulk to an active surface of the flow cell. The mixing device comprises at least one of an electrothermal mixing device, an active mechanical mixing device, and a vibrational mixing device.
摘要:
Under one aspect, a device is provided for use in luminescent imaging. The device can include a photonic superlattice including a first material, the first material having a first refractive index. The first material can include first and second major surfaces and first and second pluralities of features defined through at least one of the first and second major surfaces, the features of the first plurality differing in at least one characteristic from the features of the second plurality. The photonic superlattice can support propagation of a first wavelength and a second wavelength approximately at a first angle out of the photonic superlattice, the first and second wavelengths being separated from one another by a first non-propagating wavelength that does not selectively propagate at the first angle out of the photonic superlattice.