Abstract:
In one embodiment, a capacitor includes a first row including a first capacitor element and a second capacitor element coupled in parallel, and a second row including a third capacitor element and a fourth capacitor element coupled in parallel. The first row is coupled in series with the second row. In a metallization level over a workpiece, the second capacitor element is disposed between the first capacitor element and the third capacitor element. In the metallization level, the third capacitor element is disposed between the second capacitor element and the fourth capacitor element. The first, the second, the third, and the fourth capacitor elements are disposed in the metallization level.
Abstract:
In accordance with an embodiment of the present invention, a method of testing a plurality of semiconductor devices includes applying a stress voltage having a peak voltage on a shield line disposed over a substrate. The substrate has functional circuitry of a semiconductor device. A fixed voltage is applied to a first metal line disposed above the substrate adjacent the shield line. The first metal line is coupled to the functional circuitry and is configured to be coupled to a high voltage node during operation. The peak voltage is greater than a maximum fixed voltage. The shield line separates the first metal line from an adjacent second metal line configured to be coupled to a low voltage node during operation. The method further includes measuring a current through the shield line in response to the stress voltage, determining the current through the shield line of the semiconductor device, and based on the determination, identifying the semiconductor device as passing the test.
Abstract:
In one embodiment, a capacitor includes a first row including a first capacitor element and a second capacitor element coupled in parallel, and a second row including a third capacitor element and a fourth capacitor element coupled in parallel. The first row is coupled in series with the second row. In a metallization level over a workpiece, the second capacitor element is disposed between the first capacitor element and the third capacitor element. In the metallization level, the third capacitor element is disposed between the second capacitor element and the fourth capacitor element. The first, the second, the third, and the fourth capacitor elements are disposed in the metallization level.
Abstract:
A semiconductor wafer includes dielectric regions of different thicknesses, some of the dielectric regions being thinner and other ones of the dielectric regions being thicker. The semiconductor wafer further includes a stress circuit operable to stress at least one of the dielectric regions internally within the semiconductor wafer for assessing dielectric reliability. A corresponding method of internally assessing dielectric reliability of a semiconductor technology is also provided.
Abstract:
In one embodiment of the present invention, a method of forming a semiconductor device includes performing a test during the forming of the semiconductor device within and/or over a substrate. A first voltage is applied to a first node coupled to a component to be tested in the substrate and a test voltage at a pad coupled to the component to be tested through a second node. The test voltage has a peak voltage higher than the first voltage. The component to be tested is coupled between the first node and the second node. A leakage current is measured through the component to be tested in response to the test voltage. After performing the test, the second node is connected to a functional block in the substrate. The first node is coupled to a third node coupled to the functional block.
Abstract:
In accordance with an embodiment of the present invention, a method of testing a plurality of semiconductor devices includes applying a stress voltage having a peak voltage on a shield line disposed over a substrate. The substrate has functional circuitry of a semiconductor device. A fixed voltage is applied to a first metal line disposed above the substrate adjacent the shield line. The first metal line is coupled to the functional circuitry and is configured to be coupled to a high voltage node during operation. The peak voltage is greater than a maximum fixed voltage. The shield line separates the first metal line from an adjacent second metal line configured to be coupled to a low voltage node during operation. The method further includes measuring a current through the shield line in response to the stress voltage, determining the current through the shield line of the semiconductor device, and based on the determination, identifying the semiconductor device as passing the test.
Abstract:
In one embodiment, a capacitor includes a first row including a first capacitor element and a second capacitor element coupled in parallel, and a second row including a third capacitor element and a fourth capacitor element coupled in parallel. The first row is coupled in series with the second row. In a metallization level over a workpiece, the second capacitor element is disposed between the first capacitor element and the third capacitor element. In the metallization level, the third capacitor element is disposed between the second capacitor element and the fourth capacitor element. The first, the second, the third, and the fourth capacitor elements are disposed in the metallization level.
Abstract:
In one embodiment, a capacitor includes a first row including a first capacitor element and a second capacitor element coupled in parallel, and a second row including a third capacitor element and a fourth capacitor element coupled in parallel. The first row is coupled in series with the second row. In a metallization level over a workpiece, the second capacitor element is disposed between the first capacitor element and the third capacitor element. In the metallization level, the third capacitor element is disposed between the second capacitor element and the fourth capacitor element. The first, the second, the third, and the fourth capacitor elements are disposed in the metallization level.
Abstract:
In accordance with an embodiment of the present invention, a method of testing a plurality of semiconductor devices includes applying a stress voltage having a peak voltage on a shield line disposed over a substrate. The substrate has functional circuitry of a semiconductor device. A fixed voltage is applied to a first metal line disposed above the substrate adjacent the shield line. The first metal line is coupled to the functional circuitry and is configured to be coupled to a high voltage node during operation. The peak voltage is greater than a maximum fixed voltage. The shield line separates the first metal line from an adjacent second metal line configured to be coupled to a low voltage node during operation. The method further includes measuring a current through the shield line in response to the stress voltage, determining the current through the shield line of the semiconductor device, and based on the determination, identifying the semiconductor device as passing the test.
Abstract:
A semiconductor wafer includes dielectric regions of different thicknesses, some of the dielectric regions being thinner and other ones of the dielectric regions being thicker. The semiconductor wafer further includes a stress circuit operable to stress at least one of the dielectric regions internally within the semiconductor wafer for assessing dielectric reliability. A corresponding method of internally assessing dielectric reliability of a semiconductor technology is also provided.