Abstract:
Techniques are disclosed for enhancing performance of a perpendicular magnetic tunnel junction (MTJ) by implementing an additional ferromagnetic layer therein. The additional ferromagnetic layer can be implemented, for example, in or otherwise proximate either the fixed ferromagnetic layer or the free ferromagnetic layer of the perpendicular MTJ. In some embodiments, the additional ferromagnetic layer is implemented with a non-magnetic spacer, wherein the thickness of the additional ferromagnetic layer and/or spacer can be adjusted to sufficiently balance the energy barrier between parallel and anti-parallel states of the perpendicular MTJ. In some embodiments, the additional ferromagnetic layer is configured such that its magnetization is opposite that of the fixed ferromagnetic layer.
Abstract:
Described is an apparatus which comprises: a clamp coupled between a first power supply and a second power supply, the clamp including a plurality of transistors, a circuit to operate with the second power supply; and a control unit to turn on and off the plurality of transistors to adjust the second power supply when the apparatus enters a low power mode. The control unit includes a first comparator to compare the second power supply with a first reference, a second comparator to compare the second power supply with a second reference, and a counter. The counter counts up when the second power supply is higher than the first reference and counts down when the second power supply is lower than the second reference.
Abstract:
Techniques are disclosed for enhancing performance of a perpendicular magnetic tunnel junction (MTJ) by implementing an additional ferromagnetic layer therein. The additional ferromagnetic layer can be implemented, for example, in or otherwise proximate either the fixed ferromagnetic layer or the free ferromagnetic layer of the perpendicular MTJ. In some embodiments, the additional ferromagnetic layer is implemented with a non-magnetic spacer, wherein the thickness of the additional ferromagnetic layer and/or spacer can be adjusted to sufficiently balance the energy barrier between parallel and anti-parallel states of the perpendicular MTJ. In some embodiments, the additional ferromagnetic layer is configured such that its magnetization is opposite that of the fixed ferromagnetic layer.
Abstract:
Described is an apparatus which comprises: a first oscillator to generate a first clock signal a second oscillator to generate a second clock signal; a phase frequency detector to detect phase difference between the first and second clock signals, and to generate a phase difference; and an output stage, coupled to a load, to generate a power supply for the load according to the phase difference.
Abstract:
Disclosed herein are semiconductor device arrays, such as, Field Programmable Gate Arrays (FPGAs) and Complex Programmable Logic Arrays (CPLAs) that use high-density Spin Transfer Torque (STT)-based memory elements. STT-based memory elements can either be stand-alone FPGAs/CPLAs, or can be embedded in microprocessors and/or digital signal processing (DSP) system-on-chip (SoC) to provide design flexibility for implementing low power, scalable, secure and reconfigurable hardware architecture. Because the configuration is stored on the FPGA/CPLA die itself, the need for loading the configuration from external storage every time is eliminated when the device is powered on. In addition to instant startup, eliminating configuration I/O traffic results in power savings and possible pin count reduction. Security is greatly improved by eliminating the need to store configuration data in an external memory.
Abstract:
Described is an apparatus which comprises: a clamp coupled between a first power supply and a second power supply, the clamp including a plurality of transistors, a circuit to operate with the second power supply; and a control unit to turn on and off the plurality of transistors to adjust the second power supply when the apparatus enters a low power mode. The control unit includes a first comparator to compare the second power supply with a first reference, a second comparator to compare the second power supply with a second reference, and a counter. The counter counts up when the second power supply is higher than the first reference and counts down when the second power supply is lower than the second reference.
Abstract:
Described is an apparatus which comprises: a first oscillator to generate a first clock signal a second oscillator to generate a second clock signal; a phase frequency detector to detect phase difference between the first and second clock signals, and to generate a phase difference; and an output stage, coupled to a load, to generate a power supply for the load according to the phase difference.