Abstract:
A distributed and scalable all-digital LDO (D-DLDO) voltage regulator allowing rapid scaling across technology nodes. The distributed DLDO includes many tillable DLDO units regulating a single supply voltage with a shared power distribution network (PDN). The D-DLDO includes an all-digital proportional-integral-derivative (PID) controller that receives a first code indicative of a voltage behavior on a power supply rail. A droop detector is provided to compare the first code with a threshold to determine a droop event, wherein information about the droop event is provided to the PID controller, wherein the PID controller generates a second code according to the first code and the information about the droop event. The DLDO includes a plurality of power gates that receive the second code.
Abstract:
An ultra-deep compute Static Random Access Memory (SRAM) with high compute throughput and multi-directional data transfer capability is provided. Compute units are placed in both horizontal and vertical directions to achieve a symmetric layout while enabling communication between the compute units. An SRAM array supports simultaneous read and write to the left and right section of the same SRAM subarray by duplicating pre-decoding logic inside the SRAM array. This allows applications with non-overlapping read and write address spaces to have twice the bandwidth as compared to a baseline SRAM array.
Abstract:
An all-digital voltage monitor (ADVM) generates a multi-bit output code that changes in proportion to a voltage being monitored, by leveraging the voltage impact on a gate delay. ADVM utilizes a simple delay chain, which receives a clock-cycle-long pulse every clock cycle, such that the monitored supply voltage is sampled for one full cycle every cycle. The outputs of all delay cells of the delay chain collectively represents a current voltage state as a digital thermometer code. In AVDM, a voltage droop event thus results in a decrease in the output code from a nominal value, while an overshoot results in an increase in the output code.
Abstract:
In accordance with various embodiments of this disclosure, stray magnetic field mitigation in an MRAM memory such as a spin transfer torque (STT) random access memory (RAM), STTRAM is described. In one embodiment, retention of bitcell bit value storage states in an STTRAM may be facilitated by generating magnetic fields to compensate for stray magnetic fields which may cause bitcells of the memory to change state. In another embodiment, retention of bitcell bit value storage states in an STTRAM may be facilitated by selectively suspending access to a row of memory to temporarily terminate stray magnetic fields which may cause bitcells of the memory to change state. Other aspects are described herein.
Abstract:
Embodiments include apparatuses, methods, and systems for a flip-flop circuit with low-leakage transistors. The flip-flop circuit may be coupled to a logic circuit of an integrated circuit to store data for the logic circuit when the logic circuit is in a sleep state. The flip-flop circuit may pass a data signal for the logic circuit along a signal path. A capacitor may be coupled between the signal path and ground to store a value of the data signal when the logic circuit is in the sleep state. A low-leakage transistor, such as an IGZO transistor, may be coupled between the capacitor and the signal path and may selectively turn on when the logic circuit transitions from the active state to the sleep state to store the value of the data signal in the capacitor. Other embodiments may be described and claimed.
Abstract:
A processor or integrated circuit includes a memory to store weight values for a plurality neuromorphic states and a circuitry coupled to the memory. The circuitry is to detect an incoming data signal for a pre-synaptic neuromorphic state and initiate a time window for the pre-synaptic neuromorphic state in response to detecting the incoming data signal. The circuitry is further to, responsive to detecting an end of the time window: retrieve, from the memory, a weight value for a post-synaptic neuromorphic state for which an outgoing data signal is generated during the time window, the post-synaptic neuromorphic state being a fan-out connection of the pre-synaptic neuromorphic state; perform a causal update to the weight value, according to a learning function, to generate an updated weight value; and store the updated weight value back to the memory.
Abstract:
Systems, apparatuses and methods may provide a hybrid compression scheme to store synaptic weights in neuromorphic cores. The hybrid compression scheme utilizes a run-length encoding (RLE) compression approach, a dictionary-based encode compression scheme, and a compressionless encoding scheme to store the weights for valid synaptic connections in a synaptic weight memory.
Abstract:
Described is an apparatus which comprises: a complementary resistive memory bit-cell; a first sense amplifier coupled to the complementary resistive memory bit-cell via access devices; a second sense amplifier coupled to the first sense amplifier and to the complementary resistive memory bit-cell via the access devices, wherein the second sense amplifier is operable to detect an error in the complementary resistive memory bit-cell.
Abstract:
Described is an apparatus which comprises: a complementary resistive memory bit-cell; and a sense amplifier coupled to the complementary resistive memory bit-cell, wherein the sense amplifier includes: a first output node; and a first transistor which is operable to cause a deterministic output on the first output node.
Abstract:
An apparatus includes a first write bit line (WBL), a first P-channel metal oxide semiconductor (PMOS) transistor including a source coupled to the WBL, a first inverter including an input coupled to a drain of the first PMOS transistor, and a second PMOS transistor including a source coupled to an output of the first inverter. The first PMOS transistor and the second PMOS transistor are disposed in at least one PMOS layer configured between a first metal layer and a second metal layer. The register file circuit further includes a first via connecting a gate of the first PMOS transistor and a gate of the second PMOS transistor in the at least one PMOS layer to the first metal layer.