Abstract:
In an integrated MEMS device, moving silicon parts with smooth surfaces can stick together if they come into contact. By roughening at least one smooth surface, the effective area of contact, and therefore surface adhesion energy, is reduced and hence the sticking force is reduced. The roughening of a surface can be provided by etching the smooth surfaces in gas, plasma, or liquid with locally non-uniform etch rate. Various etch chemistries and conditions lead to various surface roughness.
Abstract:
A MEMS device is disclosed. The MEMS device includes a first substrate. At least one structure is formed within the first substrate. The first substrate includes at least one first conductive pad thereon. The MEMS device also includes a second substrate. The second substrate includes a passivation layer. The passivation layer includes a plurality of layers. A top layer of the plurality of layers comprises an outgassing barrier layer. At least one second conductive pad and at least one electrode are coupled to the top layer. At least one first conductive pad is coupled to the at least one second conductive pad.
Abstract:
A MEMS device and method for providing a MEMS device are disclosed. In a first aspect, the MEMS device comprises a first substrate and a second substrate coupled to the first substrate forming a sealed enclosure. A moveable structure is located within the sealed enclosure. An outgassing layer is formed on the first or second substrates and within the sealed enclosure. A first conductive layer is disposed between the moveable structure and the outgassing layer, wherein the first conductive layer allows outgassing species to pass therethrough.
Abstract:
A MEMS (microelectromechanical systems) structure comprises a MEMS wafer. A MEMS wafer includes a cap with cavities bonded to a structural layer through a dielectric layer disposed between the cap and the structural layer. Unique configurations of MEMS devices and methods of providing such are set forth which provide for, in part, creating rounded, scalloped or chamfered MEMS profiles by shaping the etch mask photoresist reflow, by using a multi-step deep reactive ion etch (DRIE) with different etch characteristics, or by etching after DRIE.
Abstract:
A method for forming a MEMS device is disclosed. The MEMS device includes a MEMS substrate and a base substrate. The MEMS substrate, where includes a handle layer, a device layer and an insulating layer in between. The method includes the sequential steps of: providing a standoff on the device layer; etching a via through the device layer and the insulating layer; providing a contact layer within the via, wherein the contact layer provides electrical connection between the device layer and the handle layer; providing a bonding layer on the standoff; and bonding the bonding layer to pads on the base substrate.
Abstract:
A MEMS device is disclosed. The MEMS device includes a first substrate. At least one structure is formed within the first substrate. The first substrate includes at least one first conductive pad thereon. The MEMS device also includes a second substrate. The second substrate includes a passivation layer. The passivation layer includes a plurality of layers. A top layer of the plurality of layers comprises an outgassing barrier layer. At least one second conductive pad and at least one electrode are coupled to the top layer. At least one first conductive pad is coupled to the at least one second conductive pad.
Abstract:
A MEMS device having a channel configured to avoid particle contamination is disclosed. The MEMS device includes a MEMS substrate and a base substrate. The MEMS substrate includes a MEMS device area, a seal ring and a channel. The seal ring provides for dividing the MEMS device area into a plurality of cavities, wherein at least one of the plurality of cavities includes one or more vent holes. The channel is configured between the one or more vent holes and the MEMS device area. Preferably, the channel is configured to minimize particles entering the MEMS device area directly. The base substrate is coupled to the MEMS device substrate.
Abstract:
A method of fabricating electrical connections in an integrated MEMS device is disclosed. The method comprises forming a MEMS wafer. Forming a MEMS wafer includes forming one cavity in a first semiconductor layer, bonding the first semiconductor layer to a second semiconductor layer with a dielectric layer disposed between the first semiconductor layer and the second semiconductor layer, and etching at least one via through the second semiconductor layer and the dielectric layer and depositing a conductive material on the second semiconductor layer and filling the at least one via. Forming a MEMS wafer also includes patterning and etching the conductive material to form one standoff and depositing a germanium layer on the conductive material, patterning and etching the germanium layer, and patterning and etching the second semiconductor layer to define one MEMS structure. The method also includes bonding the MEMS wafer to a base substrate.
Abstract:
Methods for bonding two wafers are disclosed. In one aspect, a first wafer includes an integrated circuit and the second wafer including a MEMS device. The method comprises depositing a bond pad on a metal on the first wafer and sequentially bonding the first wafer to the second wafer utilizing first and second temperatures. The second wafer is bonded to the bond pad at the first temperature and the bond pad and the metal are bonded at the second temperature. In another aspect, a first wafer including an integrated circuit, the second wafer includes a MEMS device. The method comprises depositing a bond pad on a metal on one of the first wafer and the second wafer and bonding the first wafer to the second wafer at a first temperature via a direct bond interface. The method includes bonding the bond pad to the metal at a second temperature.
Abstract:
A method of fabricating electrical connections in an integrated MEMS device is disclosed. The method comprises forming a MEMS wafer. Forming a MEMS wafer includes forming one cavity in a first semiconductor layer, bonding the first semiconductor layer to a second semiconductor layer with a dielectric layer disposed between the first semiconductor layer and the second semiconductor layer, and etching at least one via through the second semiconductor layer and the dielectric layer and depositing a conductive material on the second semiconductor layer and filling the at least one via. Forming a MEMS wafer also includes patterning and etching the conductive material to form one standoff and depositing a germanium layer on the conductive material, patterning and etching the germanium layer, and patterning and etching the second semiconductor layer to define one MEMS structure. The method also includes bonding the MEMS wafer to a base substrate.