Abstract:
A resin coated metal sheet for container includes a polyester resin coating layer in which 90 mol % or more of structural units are ethylene terephthalate units. A half-value width of a peak attributable to C═O stretching vibration around 1,730 cm−1 determined from laser Raman spectroscopic analysis measured by making a plane of polarization of linearly polarized laser light incident on a thickness direction section of the polyester resin coating layer perpendicularly to a thickness direction is 18.5 cm−1 to 22.0 cm−1 at a position with a thickness of 1.0 μm from a metal sheet side of the polyester resin coating layer and is greater than 17.0 cm−1 and 18.5 cm−1 or less at a position with a thickness of 1.0 μm from a surface side of the polyester resin coating layer.
Abstract:
A resin-coated metal sheet for a container includes: a metal sheet; a first resin coating layer provided on an inner face of the metal sheet after forming; and a second resin coating layer provided on an outer face of the metal sheet after forming, the second resin coating layer containing: polyester resin having a melting point of 230° C. to 254° C. as a main component; and a lubricant component, a melting point of the lubricant component being 80° C. to 230° C., an average particle diameter of the lubricant component present on a surface of the second resin coating layer being 17.0 nm or less.
Abstract:
A resin-coated metal sheet for containers that has excellent content releasability is provided. The resin-coated metal sheet includes a resin layer (A) and a resin layer (B). The resin layer (A) has a multilayer structure and is disposed on a side which, after the metal sheet is formed into a container, becomes the inner side of the container. The resin layer (B) is disposed on a side that becomes the outer side of the container. The resin layer (A) contains polyester as a main component and includes an uppermost resin layer (a1). A Raman band intensity ratio (I2968/I3085) on the surface of the resin layer (a1) is 0.6 to 0.9. The resin layer (B) includes polyester (I) composed mainly of polyethylene terephthalate and a polyester (II) composed mainly of polybutylene terephthalate. A Raman band intensity ratio on the surface of the resin layer (B) is 0.8 to 1.0.
Abstract:
A resin-coated metal sheet for can lids includes a metal sheet coated with thermoplastic resin films on both surfaces and formed into a can lid. A thermoplastic resin film A based on polybutylene terephthalate (PBT) and polyethylene terephthalate (PET) is heat-fused on a surface of the metal sheet serving as an exterior surface of the can lid, and a thermoplastic resin film B based on polyethylene terephthalate (PET) is heat-fused on a surface of the metal sheet serving as an interior surface of the can lid. A composition ratio (wt %) of PBT/PET in the thermoplastic resin film A on the exterior surface is (PBT/PET)=(40/60) to (80/20), and the thermoplastic resin film B on the interior surface includes 95 mol % or more of PET.
Abstract:
The resin-coated metal sheet for containers includes a resin coating layer (A) having a multilayered structure mainly composed of a polyester resin on at least one surface thereof. The resin coating layer (A) includes a resin layer (a1). The resin layer (a1) adheres to the metal sheet, contains (i) a polyester resin, (ii) a phenolic resin, (iii) a metal alkoxide compound and/or a metal chelate compound, (iv) an epoxy resin, and (v) at least one selected from the group consisting of polyamine resins, polyamidoamine resins, and polyamide resins, and is mainly composed of the polyester resin. Preferably, a polyester film (a2) is disposed on the resin layer (a1).
Abstract:
A steel sheet for a two-piece can, the steel sheet includes: by mass %, C: 0.010% or more and less than 0.030%; Si: 0.04% or less; Mn: 0.10% or more and less than 0.40%; P: 0.02% or less; S: 0.020% or less; Al: more than 0.030% and 0.100% or less; N: 0.0005% or more and less than 0.0030%; B: 0.0005% to 0.0030%; and balance Fe and inevitable impurities, wherein an amount of N that is present as BN and a whole amount of N satisfy the following expression (1): [N as BN]/[N]>0.5 (1), where N as BN represents the amount of N that is present as BN, and N represents the whole amount of N, a yield point is 280 MPa or more and less than 420 MPa, yield elongation is 3% or less, and Δr is −0.30 to 0.20.
Abstract:
A laminated steel sheet for a two-piece can body with a high strain level satisfying the following formulae, the polyester resin layer composing the laminated steel sheet having a center line surface roughness (Ra) of 0.2 μm to 1.8 μm: r1≤r,0.1≤r1/R≤0.25, and 1.5≤h/(R−r)≤4 wherein h is the height of the two-piece can body, r is the maximum radius, r1 is the minimum radius, and R is the radius of the circular laminated steel sheet before forming having the same weight as the can body.
Abstract:
Provided is a resin-coated metal sheet for a container having a resin layer (A) having a multi-layer structure containing polyester as a main component on an inner-surface side of the container when the metal sheet is formed into the container. The resin layer (A) contains terephthalic acid in an amount of 85 mol % or more, the resin layer (A) has at least two layers including an uppermost resin layer (a1) which comes into contact with contents and contains wax compounds in an amount of 0.10 mass % or more and 2.0 mass % or less with respect to the uppermost resin layer (a1), with respect to a Raman band of 1615 cm−1 determined by performing Raman spectroscopy on the uppermost resin layer (a1), the maximum value of the peak intensity ratio (IMD/IND) of peak intensity in a longitudinal direction to peak intensity in a thickness direction is 1.0 or more and 4.0 or less, a thickness of the uppermost resin layer (a1) is 0.5 μm or more and 10 μm or less, and a thickness of the resin layer (A) excluding the thickness of the uppermost resin layer (a1) is 5 μm or more and 20 μm or less.
Abstract:
Provided are a laminated metal sheet for containers that has excellent formability after heat treatment performed after coating, printing, etc. and is suitable for DR cans, a method for producing a metal can using the above metal sheet and a method for evaluating the formability of a metal sheet. The crystal structure of a top layer of a laminate layer of the laminated metal sheet for containers and the crystal structure inside the laminate layer are controlled in a sophisticated manner. Specifically, the intensity ratio I2968/I3085 of the Raman band intensity (I2968) at a peak position around 2,968 cm−1 to the Raman band intensity (I3085) at a peak position around 3,085 cm−1 that are obtained by laser Raman spectroscopy is used. This intensity ratio is controlled within a specific range.
Abstract:
A resin-coated metal sheet for containers includes a metal sheet and oriented films coating both surfaces of the metal sheet and made of a polyester resin, wherein the polyester resin includes 92 mol % or more of an ethylene terephthalate unit, the full-width at half maximum of a C═O peak at 1725 cm−1±5 cm−1 is 20 cm−1 or more and 25 cm−1 or less in Raman spectroscopy in an orientation direction of the surfaces of the films after coating the metal sheet, and the ratio (I1725/I1615) of the C═O peak intensity at 1725 cm−1±5 cm−1 to the C═C peak intensity at 1615 cm−1±5 cm−1 is 0.50 or more and 0.70 or less in the Raman spectroscopy.