Abstract:
Product transport containers are disclosed. Such containers can provide one or more advantages compared to existing containers. For example, product transport containers described herein can maintain a product at a desired temperature for an extended period of time, including without the use of an active heating or cooling component. Such product transport containers described herein may also provide improved breathability, thermal insulation, and/or mechanical strength or dimensional stability. Such containers can include a plurality of walls defining an interior volume and a selectively openable side permitting movement of the product into and out of the interior volume of the container. The walls can be formed from a thermoformed non-woven fabric.
Abstract:
A three-piece resealable can for acidic liquid includes, a cylindrical can body member that includes a screw portion at one end; and a can bottom member that contacts the can body member so as to close an opening portion of the other end of the can body member. The can body member includes a cylindrical first steel sheet, Ni plating that is formed on an inner circumferential surface of the first steel sheet, a polyester film that is formed so as to be disposed on the outermost surface of the inner circumference of the can body member, and a Zr-containing film that is formed between the first steel sheet and the polyester film. The can bottom member includes a second steel sheet, and Sn plating that is formed on the can body member side of the can bottom member. The Zr-containing film contains Zr compounds.
Abstract:
A lower layer in contact with a metal sheet of a laminated resin layer contains 90 mol % or more of terephthalic acid in the polycarboxylic acid component and 30 to 50 mol % of ethylene glycol, 50 to 70 mol % of 1,4-butanediol, and 10 mol % or less of other polyol components in the polyol component, and a main layer and an upper layer of the laminated resin layer include polyester containing 90 mol % or more of terephthalic acid in the polycarboxylic acid component and 90 mol % or more of 1,4-butanediol in the polyol component, has a total thickness of 3 to 25 μm, and has a ratio (I011/I100) of peak intensity (I011) observed in a range of 2θ=15.5 degrees to 17.0 degrees to peak intensity (I100) observed in a range of 2θ=22.5 degrees to 24.0 degrees in X-ray analysis in a range of 0.2 to 5.0.
Abstract:
A manufacturing method for steel sheets for containers produces steel sheets with excellent film adhesion qualities. This steel sheet for containers has, on a steel sheet, a chemical conversion coating with a metal Zr content of 1-100 mg/m2, a P content of 0.1-50 mg/m2, and an F content of no more than 0.1 mg/m2, upon which is formed a phenolic resin layer with a C content of 0.1-50 mg/m2. Moreover, the manufacturing method for steel sheets for containers is a method for obtaining the steel sheet for containers wherein the chemical conversion coating is formed on the steel sheet by subjecting the steel sheet to immersion in or electrolytic treatment with a treatment solution containing Zr ions, phosphoric acid ions, and F ions; and subsequently, the steel sheet upon which the chemical conversion coating has been formed is immersed in, or undergoes topical application of, an aqueous solution containing phenolic resin, then dried.
Abstract:
A covering substrate adhered to a container providing a hygienic environment at a top portion of the container. The covering substrate includes a non-metallic covering with a tab defined within the perimeter of the substrate.
Abstract:
A drinks container includes a lateral container surface defining an inner lateral surface and a height, a cover element which closes the lateral container surface, and a base element which closes the lateral container surface. The lateral container surface comprises the inner lateral surface comprising a barrier layer, an exterior side, at least one parallel-wound laminate comprising a cellulose-containing material, a multilayered sheet material arranged in a region of the inner lateral surface, and a laminate overlapping region arranged on the exterior side. The laminate overlapping region comprises a first strip-like section extending over the height of the lateral container surface. A second section curves convexly outwardly in a circumferential direction. The second section symmetrically adjoins the first strip-like section. The at least one parallel-wound laminate comprises overlapping peripheral strips and is covered at least in the laminate overlapping region on at least one side with an adhesive sheet material.
Abstract:
Disclosed is a biodegradable sheet prepared from biodegradable material comprising a gas barrier material, wherein the gas barrier material may be a nanoclay and/or polyvinyl alcohol.
Abstract:
There is provided a resin-coated metal sheet for containers that can satisfy various characteristics required for food can materials.The resin-coated metal sheet for containers includes a resin coating layer (A) having a multilayered structure mainly composed of a polyester resin on at least one surface thereof. The resin coating layer (A) includes a resin layer (a1). The resin layer (a1) adheres to the metal sheet, contains (i) a polyester resin, (ii) a phenolic resin, (iii) a metal alkoxide compound and/or a metal chelate compound, (iv) an epoxy resin, and (v) at least one selected from the group consisting of polyamine resins, polyamidoamine resins, and polyamide resins, and is mainly composed of the polyester resin. Preferably, a polyester film (a2) is disposed on the resin layer (a1).
Abstract:
An at least two layer rotomoulded article can include a layer A and a layer B. Layer A can include an aliphatic polyester selected from polyhydroxyalkanoate, poly(lactic acid), polycaprolactone, copolyesters and polyesteramides. Layer A can include a polyolefin. Layer A can include a co- or ter-polymer that includes ethylene or styrene monomer, an unsaturated anhydride-containing monomer, epoxide-containing monomer, or carboxylic acid-containing monomer, and a (meth)acrylic ester monomer. Layer B can include a polyolefin and a polyester. Layer B can include a co- or ter-polymer that includes an ethylene or a styrene monomer, an unsaturated anhydride-containing monomer, epoxide-containing monomer, or carboxylic acid-containing monomer, and a (meth)acrylic ester monomer.
Abstract:
The present invention provides a heat shrinkable multilayer film that has excellent adhesiveness between front and back layers and an interlayer, effectively prevents delamination, and is less likely to have white creases on folds. The present invention also provides a heat shrinkable label formed from the heat shrinkable multilayer film. The present invention relates to a heat shrinkable multilayer film, including: front and back layers each containing a polyester resin; an interlayer containing a polystyrene resin; and adhesive layers, wherein the front and back layers and the interlayer are stacked with the adhesive layers interposed therebetween, and the adhesive layers each contain 50 to 95% by weight of a polystyrene resin and 5 to 50% by weight of a polyester elastomer.