摘要:
A method for treating a semiconductor surface to form a metal-containing layer includes providing a semiconductor substrate having an exposed surface. The exposed surface of the semiconductor substrate is treated by forming one or more metals overlying the semiconductor substrate but not completely covering the exposed surface of the semiconductor substrate. The one or more metals enhance nucleation for subsequent material growth. A metal-containing layer is formed on the exposed surface of the semiconductor substrate that has been treated. The treatment of the exposed surface of the semiconductor substrate assists the metal-containing layer to coalesce. In one embodiment, treatment of the exposed surface to enhance nucleation may be performed by spin-coating, atomic layer deposition (ALD), physical layer deposition (PVD), electroplating, or electroless plating. The one or more metals used to treat the exposed surface may include any rare earth or transition metal, such as, for example, hafnium, lanthanum, etc.
摘要:
A method for forming at least a portion of a semiconductor device includes providing a semiconductor substrate, flowing a first precursor gas over the substrate to form a first metal-containing layer overlying the semiconductor substrate, and after completing said step of flowing the first precursor gas, flowing a first deuterium-containing purging gas over the first metal-containing layer to incorporate deuterium into the first metal-containing layer and to also purge the first precursor gas. The method may further include flowing a second precursor gas over the first metal-containing layer to react with the first metal-containing layer to form a metal compound-containing layer, and flowing a second deuterium-containing purging gas over the metal compound-containing layer to incorporate deuterium into the metal compound-containing layer and to also purge the second precursor gas.
摘要:
A semiconductor process and apparatus fabricate a metal gate electrode by forming a first conductive layer (22) over a gate dielectric layer (11), forming a transition layer (32) over the first conductive layer using an atomic layer deposition process in which an amorphizing material is increasingly added as the transition layer is formed, forming a capping conductive layer (44) over the transition layer, and then selectively etching the capping conductive layer, transition layer, and first conductive layer, resulting in the formation of an etched gate stack (52). By forming the transition layer (32) with an atomic layer deposition process in which the amorphizing material (such as silicon, carbon, or nitrogen) is increasingly added, the transition layer (32) is constructed having a lower region (e.g., 31, 33) with a polycrystalline structure and an upper region (e.g., 37, 39) with an amorphous structure that blocks silicon diffusion.
摘要:
A metal-containing semiconductor layer having a high dielectric constant is formed with a method that avoids inclusion of contaminant elements that reduce dielectric constant of metals. The metal-containing semiconductor layer is formed overlying a substrate in a chamber. A precursor is introduced to deposit at least a portion of the metal-containing semiconductor layer. The precursor contains one or more elements that, if allowed to deposit in the metal-containing layer, would become impurity elements. A reactant gas is used to purify the metal-containing layer by removing impurity elements from the metal-containing layer which were introduced into the chamber by the precursor.
摘要:
A stack located over a substrate. The stack includes a layer between a dielectric layer and a metal layer. The layer includes a halogen and a metal. In one embodiment, the halogen is fluorine. In one embodiment, the stack is a control electrode stack for a transistor. In one example the control electrode stack is a gate stack for a MOSFET. In one example, the layer includes aluminum fluoride.
摘要:
A resistive device (44) and a transistor (42) are formed. Each uses a portion of a metal layer (18) that is formed at the same time and thus additional process steps are avoided to remove the metal from the resistive device. The metal used in the resistive device is selectively treated to increase the resistance in the resistive device. A polycrystalline semiconductor material layer (34) overlies the metal layer in the resistive device. The combination of these layers provides the resistive device. In one form the metal is treated after formation of the polycrystalline semiconductor material layer. In one form the metal treatment involves an implant of a species, such as oxygen, to increase the resistivity of the metal. Various transistor structures are formed using the untreated portion of the metal layer as a control electrode.
摘要:
A method and apparatus are described for fabricating metal gate electrodes (85, 86) over a high-k gate dielectric layer (32) having a rare earth oxide capping layer (44) in at least the NMOS device area by treating the surface of a rare earth oxide capping layer (44) with an oxygen-free plasma process (42) to improve photoresist adhesion, forming a patterned photoresist layer (52) directly on the rare earth oxide capping layer (44), and then applying a wet etch process (62) to remove the exposed portion of the rare earth oxide capping layer (44) from the PMOS device area.
摘要:
A method including partially etching a first portion of a first layer, wherein the first layer is a conductive layer, is provided. The method further includes removing at least a portion of a second layer. The method further includes completing etching of said first portion of the conductive layer so that said first portion of the conductive layer is removed. The method further includes completing formation of the semiconductor device.
摘要:
A stack located over a substrate. The stack includes a layer between a dielectric layer and a metal layer. The layer includes a halogen and a metal. In one embodiment, the halogen is fluorine. In one embodiment, the stack is a control electrode stack for a transistor. In one example the control electrode stack is a gate stack for a MOSFET. In one example, the layer includes aluminum fluoride.
摘要:
A method for providing gates of transistors with at least two different work functions utilizes a silicidation of two different metals at different times, silicidation for one gate and polysilicon for the other, or silicidation using a single metal with two differently doped silicon structures. Thus the problem associated with performing silicidation of two different metals at the same time is avoided. If the two metals have significantly different silicidation temperatures, the one with the lower temperature silicidation will likely have significantly degraded performance as a result of having to also experience the higher temperature required to achieve silicidation with the other metal.