Abstract:
Systems and methods for analyzing multiple components of a fluid sample are provided. In certain embodiments, a system can include an analyte detection system configured to measure first analyte data in a first component of a fluid sample received from a patient and measure second analyte data in a second component of a fluid sample. In some embodiments, one or more portions of an optical system is movable with respect to other portions of the system in order to optically and/or electrochemically analyze multiple components of a fluid sample. In other embodiments, optical and/or electrochemical analysis can be performed simultaneously on multiple components of a fluid sample. In some embodiments, a first analyte can be measured in a sample (e.g., whole blood) before the sample is separated into its components (e.g., plasma, red blood cells, etc.), and a second analyte can be measured in a component of the sample after separation.
Abstract:
A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
Abstract:
Disclosed are methods and apparatus for determining analyte concentration in a sample such as bodily fluid. Systems and methods disclosed herein can also include a treatment dosing system to infuse or inject a treatment drug (e.g., insulin or glucose) and provide glycemic control. The dose of the treatment drug may be based on the concentration of the analyte or the average value for the concentration of the analyte and/or the rate of change of the value of the concentration of the analyte.
Abstract:
In certain embodiments, a method of maintaining health of a patient uses an analyte detection system. The analyte detection system is coupled to the patient such that a bodily fluid of the patient is accessible to the analyte detection system. The method includes automatically initiating and conducting a measurement of an analyte in the bodily fluid using the analyte detection system. The method further includes determining a treatment dose for the patient based on the measurement using the analyte detection system.
Abstract:
A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
Abstract:
In certain embodiments, a method samples a body fluid of a patient. The method includes providing a fluid handling system having one or more fluid passageways. The method further includes infusing an infusion fluid by way of a fluid handling system into a patient through one or more fluid passageways. The method further includes obtaining a sample of body fluid by way of a fluid handling system from a patient through one or more fluid passageways. The obtained sample is no more than 5 milliliters in volume. The method further includes analyzing at least an analyzed portion of the obtained sample by way of an analyte detection system operatively associated with the fluid handling system to determine a concentration of at least one analyte.
Abstract:
In certain embodiments, a method samples a body fluid of a patient. The method includes providing a fluid handling system having one or more fluid passageways. The method further includes infusing an infusion fluid by way of a fluid handling system into a patient through one or more fluid passageways. The method further includes obtaining a sample of body fluid by way of a fluid handling system from a patient through one or more fluid passageways. The obtained sample is no more than 400 microliters in volume. The method further includes analyzing at least an analyzed portion of the obtained sample by way of an analyte detection system operatively associated with the fluid handling system to determine a concentration of at least one analyte.
Abstract:
A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
Abstract:
A device and method are provided for use with a noninvasive optical measurement system, such as a thermal gradient spectrometer, for improved determination of analyte concentrations within living tissue. In one embodiment, a wearable window is secured to a patient's forearm thereby isolating a measurement site on the patient's skin for determination of blood glucose levels. The wearable window effectively replaces a window of the spectrometer, and thus forms an interface between the patient's skin and a thermal mass window of the spectrometer. When the spectrometer must be temporarily removed from the patient's skin, such as to allow the patient mobility, the wearable window is left secured to the forearm so as to maintain a consistent measurement site on the skin. When the spectrometer is later reattached to the patient, the wearable window will again form an interface between the spectrometer and the same location of skin as before.
Abstract:
Methods and systems for determining the concentration of one or more analytes from a sample such as blood or plasma are described. The systems described herein can be configured to withdraw a certain volume of sample from a source of bodily fluid, direct a first portion of the withdrawn sample to an analyte monitoring system and return a second portion of the sample to the patient. The analyte monitoring system can include an automated blood withdrawal system that is configured to withdraw blood from the patient's vasculature at low pressure and/or withdrawal rates so as to reduce or prevent contamination of the withdrawn fluid from the infusion fluids.