Abstract:
Provided is a high-speed ring optical modulator based on a silicon semiconductor, having increased optical modulation speed. The high-speed ring optical modulator includes a ring optical waveguide including a portion in which the refractive index varies, that is, a refractive index variation portion, and an optical waveguide having a constant refractive index. The refractive index variation portion comprises a bipolar transistor. Thus carriers can be supplied to and discharged from the refractive index variation portion, through which light is transmitted, at high speed, and thus the optical modulation speed can be increased.
Abstract:
Provided is an electro-optic modulating device. The electro-optic modulating device includes an optical waveguide with a vertical structure and sidewalls of the vertical structure are used to configure a junction.
Abstract:
Provided is an optical network structure. To configure an optical network structure between hundreds or more of cores in a CPU, intersection between waveguides does not occur, and thus, the optical network structure enables two-way communication between all the cores without an optical switch disposed in an intersection point. The present invention enables a single chip optical network using a silicon photonics optical element, and a CPU chip configured with hundreds or thousands of cores can be developed.
Abstract:
Provided are an electro-optic device with a high modulation rate and a mach-zehnder optical modulator having the same. The electro-optic device includes a slap, a rip waveguide, a first impurity region, a second impurity region, and a third impurity region. The slap is disposed on a substrate. The rip waveguide includes a mesa extending in one direction on the slap and the slap disposed under the mesa. The first impurity region is disposed in the slap of one side of the mesa. The third impurity region is disposed in the slap of the other side of the mesa to oppose the first impurity region. The second impurity region is disposed in the rip waveguide between the first impurity region and the third impurity region.
Abstract:
Provided is a germanium photodetector having a germanium epitaxial layer formed without using a buffer layer and a method of fabricating the same. In the method, an amorphous germanium layer is formed on a substrate. The amorphous germanium layer is heated up to a high temperature to form a crystallized germanium layer. A germanium epitaxial layer is formed on the crystallized germanium layer.
Abstract:
The inventive concept provides semiconductor laser devices and methods of fabricating the same. According to the method, a silicon-crystalline germanium layer for emitting a laser may be formed in a selected region by a selective epitaxial growth (SEG) method. Thus, surface roughness of both ends of a Fabry Perot cavity formed of the silicon-crystalline germanium layer may be reduced or minimized, and a cutting process and a polishing process may be omitted in the method of fabricating the semiconductor laser device.
Abstract:
Provided are methods of forming an optical coupler. The method includes forming a first waveguide and an in-plane tapered layer on a silicon layer, forming a mask with first and second openings. The first opening is formed between the in-plane tapered layer and the second opening, and the second opening extends from the first opening with a gradually narrowing width. Thereafter, a planar waveguide and a three-dimensional tapered layer are simultaneously formed in the first and second openings, respectively. The planar waveguide has a substantially uniform thickness, and the three-dimensional tapered layer has a thickness gradually increasing with a decrease of the width thereof.
Abstract:
Provided is a waveguide photodetector that may improve an operation speed and increase or maximize productivity. The waveguide photodetector includes a waveguide layer extending in a first direction, an absorption layer disposed on the waveguide layer, a first electrode disposed on the absorption layer, a second electrode disposed on the waveguide layer, the second electrode being spaced from the first electrode and the absorption layer in a second direction crossing the first direction, and at least one bridge electrically connecting the absorption layer to the second electrode.
Abstract:
Provided is an optical connector that can improve coupling efficiency and coupling reliability. The optical connector includes an optical fiber guiding pad configured to guide an optical fiber connected to an optical waveguide that is disposed on an optoelectronic device IC, or includes a ferrule guiding pad and a ferrule guiding bar that guide a ferrule coupled to the optoelectronic device IC.
Abstract:
Methods for tuning a wavelength of an optical device are provided. According to the method, a core pattern may be formed on a substrate, a dielectric layer may be formed to cover the core pattern, and the dielectric layer may be thermally treated to increase a refractive index of the dielectric layer. The dielectric layer may include a silicon oxynitride layer.